DEFINITION r_arith0()
TYPE =
∀k:K.∀i:nat.(eq nat (minus (r k (S i)) (S O)) (r k i))
BODY =
assume k: K
assume i: nat
(h1)
(h1)
by (refl_equal . .)
eq nat (r k i) (r k i)
end of h1
(h2)
by (minus_Sx_SO .)
eq nat (minus (S (r k i)) (S O)) (r k i)
end of h2
by (eq_ind_r . . . h1 . h2)
eq nat (minus (S (r k i)) (S O)) (r k i)
end of h1
(h2)
by (r_S . .)
eq nat (r k (S i)) (S (r k i))
end of h2
by (eq_ind_r . . . h1 . h2)
we proved eq nat (minus (r k (S i)) (S O)) (r k i)
we proved ∀k:K.∀i:nat.(eq nat (minus (r k (S i)) (S O)) (r k i))