DEFINITION r_S()
TYPE =
∀k:K.∀i:nat.(eq nat (r k (S i)) (S (r k i)))
BODY =
assume k: K
we proceed by induction on k to prove ∀i:nat.(eq nat (r k (S i)) (S (r k i)))
case Bind : b:B ⇒
the thesis becomes ∀i:nat.(eq nat (S (r (Bind b) i)) (S (r (Bind b) i)))
assume i: nat
by (refl_equal . .)
we proved eq nat (S (r (Bind b) i)) (S (r (Bind b) i))
that is equivalent to eq nat (r (Bind b) (S i)) (S (r (Bind b) i))
∀i:nat.(eq nat (S (r (Bind b) i)) (S (r (Bind b) i)))
case Flat : f:F ⇒
the thesis becomes ∀i:nat.(eq nat (S (r (Flat f) i)) (S (r (Flat f) i)))
assume i: nat
by (refl_equal . .)
we proved eq nat (S (r (Flat f) i)) (S (r (Flat f) i))
that is equivalent to eq nat (r (Flat f) (S i)) (S (r (Flat f) i))
∀i:nat.(eq nat (S (r (Flat f) i)) (S (r (Flat f) i)))
we proved ∀i:nat.(eq nat (r k (S i)) (S (r k i)))
we proved ∀k:K.∀i:nat.(eq nat (r k (S i)) (S (r k i)))