DEFINITION pr3_wcpr0_t()
TYPE =
       c1:C.c2:C.(wcpr0 c2 c1)t1:T.t2:T.(pr3 c1 t1 t2)(pr3 c2 t1 t2)
BODY =
        assume c1C
        assume c2C
        suppose Hwcpr0 c2 c1
          we proceed by induction on H to prove t1:T.t2:T.(pr3 c1 t1 t2)(pr3 c2 t1 t2)
             case wcpr0_refl : c:C 
                    assume t1T
                    assume t2T
                    suppose H0pr3 c t1 t2
                      consider H0
             case wcpr0_comp : c0:C c3:C H0:wcpr0 c0 c3 u1:T u2:T H2:pr0 u1 u2 k:K 
                the thesis becomes t1:T.t2:T.H3:(pr3 (CHead c3 k u2) t1 t2).(pr3 (CHead c0 k u1) t1 t2)
                () by induction hypothesis we know t1:T.t2:T.(pr3 c3 t1 t2)(pr3 c0 t1 t2)
                    assume t1T
                    assume t2T
                    suppose H3pr3 (CHead c3 k u2) t1 t2
                      by (pr2_free . . . H2)
                      we proved pr2 c3 u1 u2
                      by (pr3_pr2_pr3_t . . . . . H3 . previous)
                      we proved pr3 (CHead c3 k u1) t1 t2
                      we proceed by induction on the previous result to prove pr3 (CHead c0 k u1) t1 t2
                         case pr3_refl : t:T 
                            the thesis becomes pr3 (CHead c0 k u1) t t
                               by (pr3_refl . .)
pr3 (CHead c0 k u1) t t
                         case pr3_sing : t0:T t3:T H4:pr2 (CHead c3 k u1) t3 t0 t4:T :pr3 (CHead c3 k u1) t0 t4 
                            the thesis becomes pr3 (CHead c0 k u1) t3 t4
                            (H6) by induction hypothesis we know pr3 (CHead c0 k u1) t0 t4
                                assume yC
                                suppose H7pr2 y t3 t0
                                  we proceed by induction on H7 to prove (eq C y (CHead c3 k u1))(pr3 (CHead c0 k u1) t3 t0)
                                     case pr2_free : c:C t5:T t6:T H8:pr0 t5 t6 
                                        the thesis becomes (eq C c (CHead c3 k u1))(pr3 (CHead c0 k u1) t5 t6)
                                           suppose eq C c (CHead c3 k u1)
                                              by (pr2_free . . . H8)
                                              we proved pr2 (CHead c0 k u1) t5 t6
                                              by (pr3_pr2 . . . previous)
                                              we proved pr3 (CHead c0 k u1) t5 t6
(eq C c (CHead c3 k u1))(pr3 (CHead c0 k u1) t5 t6)
                                     case pr2_delta : c:C d:C u:T i:nat H8:getl i c (CHead d (Bind Abbr) u) t5:T t6:T H9:pr0 t5 t6 t:T H10:subst0 i u t6 t 
                                        the thesis becomes H11:(eq C c (CHead c3 k u1)).(pr3 (CHead c0 k u1) t5 t)
                                           suppose H11eq C c (CHead c3 k u1)
                                              (H12
                                                 we proceed by induction on H11 to prove getl i (CHead c3 k u1) (CHead d (Bind Abbr) u)
                                                    case refl_equal : 
                                                       the thesis becomes the hypothesis H8
getl i (CHead c3 k u1) (CHead d (Bind Abbr) u)
                                              end of H12
                                              by (pr0_refl .)
                                              we proved pr0 u1 u1
                                              by (wcpr0_comp . . H0 . . previous .)
                                              we proved wcpr0 (CHead c0 k u1) (CHead c3 k u1)
                                              by (wcpr0_getl_back . . previous . . . . H12)
                                              we proved 
                                                 ex3_2 C T λe2:C.λu2:T.getl i (CHead c0 k u1) (CHead e2 (Bind Abbr) u2) λe2:C.λ:T.wcpr0 e2 d λ:C.λu2:T.pr0 u2 u
                                              we proceed by induction on the previous result to prove pr3 (CHead c0 k u1) t5 t
                                                 case ex3_2_intro : x0:C x1:T H13:getl i (CHead c0 k u1) (CHead x0 (Bind Abbr) x1) :wcpr0 x0 d H15:pr0 x1 u 
                                                    the thesis becomes pr3 (CHead c0 k u1) t5 t
                                                       by (pr0_subst0_back . . . . H10 . H15)
                                                       we proved ex2 T λt:T.subst0 i x1 t6 t λt:T.pr0 t t
                                                       we proceed by induction on the previous result to prove pr3 (CHead c0 k u1) t5 t
                                                          case ex_intro2 : x:T H16:subst0 i x1 t6 x H17:pr0 x t 
                                                             the thesis becomes pr3 (CHead c0 k u1) t5 t
                                                                (h1
                                                                   by (pr2_delta . . . . H13 . . H9 . H16)
pr2 (CHead c0 k u1) t5 x
                                                                end of h1
                                                                (h2
                                                                   by (pr2_free . . . H17)
                                                                   we proved pr2 (CHead c0 k u1) x t
                                                                   by (pr3_pr2 . . . previous)
pr3 (CHead c0 k u1) x t
                                                                end of h2
                                                                by (pr3_sing . . . h1 . h2)
pr3 (CHead c0 k u1) t5 t
pr3 (CHead c0 k u1) t5 t
                                              we proved pr3 (CHead c0 k u1) t5 t
H11:(eq C c (CHead c3 k u1)).(pr3 (CHead c0 k u1) t5 t)
                                  we proved (eq C y (CHead c3 k u1))(pr3 (CHead c0 k u1) t3 t0)
                               we proved y:C.(pr2 y t3 t0)(eq C y (CHead c3 k u1))(pr3 (CHead c0 k u1) t3 t0)
                               by (insert_eq . . . . previous H4)
                               we proved pr3 (CHead c0 k u1) t3 t0
                               by (pr3_t . . . previous . H6)
pr3 (CHead c0 k u1) t3 t4
                      we proved pr3 (CHead c0 k u1) t1 t2
t1:T.t2:T.H3:(pr3 (CHead c3 k u2) t1 t2).(pr3 (CHead c0 k u1) t1 t2)
          we proved t1:T.t2:T.(pr3 c1 t1 t2)(pr3 c2 t1 t2)
       we proved c1:C.c2:C.(wcpr0 c2 c1)t1:T.t2:T.(pr3 c1 t1 t2)(pr3 c2 t1 t2)