DEFINITION pr3_pr3_pr3_t()
TYPE =
       c:C.u1:T.u2:T.(pr3 c u1 u2)t1:T.t2:T.k:K.(pr3 (CHead c k u2) t1 t2)(pr3 (CHead c k u1) t1 t2)
BODY =
        assume cC
        assume u1T
        assume u2T
        suppose Hpr3 c u1 u2
          we proceed by induction on H to prove t1:T.t2:T.k:K.(pr3 (CHead c k u2) t1 t2)(pr3 (CHead c k u1) t1 t2)
             case pr3_refl : t:T 
                    assume t1T
                    assume t2T
                    assume kK
                    suppose H0pr3 (CHead c k t) t1 t2
                      consider H0
             case pr3_sing : t2:T t1:T H0:pr2 c t1 t2 t3:T :pr3 c t2 t3 
                the thesis becomes t0:T.t4:T.k:K.H3:(pr3 (CHead c k t3) t0 t4).(pr3 (CHead c k t1) t0 t4)
                (H2) by induction hypothesis we know t4:T.t5:T.k:K.(pr3 (CHead c k t3) t4 t5)(pr3 (CHead c k t2) t4 t5)
                    assume t0T
                    assume t4T
                    assume kK
                    suppose H3pr3 (CHead c k t3) t0 t4
                      by (H2 . . . H3)
                      we proved pr3 (CHead c k t2) t0 t4
                      by (pr3_pr2_pr3_t . . . . . previous . H0)
                      we proved pr3 (CHead c k t1) t0 t4
t0:T.t4:T.k:K.H3:(pr3 (CHead c k t3) t0 t4).(pr3 (CHead c k t1) t0 t4)
          we proved t1:T.t2:T.k:K.(pr3 (CHead c k u2) t1 t2)(pr3 (CHead c k u1) t1 t2)
       we proved c:C.u1:T.u2:T.(pr3 c u1 u2)t1:T.t2:T.k:K.(pr3 (CHead c k u2) t1 t2)(pr3 (CHead c k u1) t1 t2)