DEFINITION pr3_pr1()
TYPE =
       t1:T.t2:T.(pr1 t1 t2)c:C.(pr3 c t1 t2)
BODY =
        assume t1T
        assume t2T
        suppose Hpr1 t1 t2
          we proceed by induction on H to prove c:C.(pr3 c t1 t2)
             case pr1_refl : t:T 
                the thesis becomes c:C.(pr3 c t t)
                   assume cC
                      by (pr3_refl . .)
                      we proved pr3 c t t
c:C.(pr3 c t t)
             case pr1_sing : t0:T t3:T H0:pr0 t3 t0 t4:T :pr1 t0 t4 
                the thesis becomes c:C.(pr3 c t3 t4)
                (H2) by induction hypothesis we know c:C.(pr3 c t0 t4)
                   assume cC
                      (h1
                         by (pr2_free . . . H0)
pr2 c t3 t0
                      end of h1
                      (h2by (H2 .) we proved pr3 c t0 t4
                      by (pr3_sing . . . h1 . h2)
                      we proved pr3 c t3 t4
c:C.(pr3 c t3 t4)
          we proved c:C.(pr3 c t1 t2)
       we proved t1:T.t2:T.(pr1 t1 t2)c:C.(pr3 c t1 t2)