DEFINITION pr3_gen_void()
TYPE =
       c:C
         .u1:T
           .t1:T
             .x:T
               .pr3 c (THead (Bind Void) u1 t1) x
                 (or
                      ex3_2
                        T
                        T
                        λu2:T.λt2:T.eq T x (THead (Bind Void) u2 t2)
                        λu2:T.λ:T.pr3 c u1 u2
                        λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t1 t2)
                      pr3 (CHead c (Bind Void) u1) t1 (lift (S OO x))
BODY =
        assume cC
        assume u1T
        assume t1T
        assume xT
        suppose Hpr3 c (THead (Bind Void) u1 t1) x
           assume yT
           suppose H0pr3 c y x
             we proceed by induction on H0 to prove 
                x0:T
                  .x1:T
                    .eq T y (THead (Bind Void) x0 x1)
                      (or
                           ex3_2
                             T
                             T
                             λu2:T.λt2:T.eq T x (THead (Bind Void) u2 t2)
                             λu2:T.λ:T.pr3 c x0 u2
                             λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t2)
                           pr3 (CHead c (Bind Void) x0) x1 (lift (S OO x))
                case pr3_refl : t:T 
                   the thesis becomes 
                   x0:T
                     .x1:T
                       .H1:eq T t (THead (Bind Void) x0 x1)
                         .or
                           ex3_2
                             T
                             T
                             λu2:T.λt2:T.eq T t (THead (Bind Void) u2 t2)
                             λu2:T.λ:T.pr3 c x0 u2
                             λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t2)
                           pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t)
                       assume x0T
                       assume x1T
                       suppose H1eq T t (THead (Bind Void) x0 x1)
                         (h1
                            by (refl_equal . .)
eq T (THead (Bind Void) x0 x1) (THead (Bind Void) x0 x1)
                         end of h1
                         (h2by (pr3_refl . .) we proved pr3 c x0 x0
                         (h3
                             assume bB
                             assume uT
                               by (pr3_refl . .)
                               we proved pr3 (CHead c (Bind b) u) x1 x1
b:B.u:T.(pr3 (CHead c (Bind b) u) x1 x1)
                         end of h3
                         by (ex3_2_intro . . . . . . . h1 h2 h3)
                         we proved 
                            ex3_2
                              T
                              T
                              λu2:T.λt2:T.eq T (THead (Bind Void) x0 x1) (THead (Bind Void) u2 t2)
                              λu2:T.λ:T.pr3 c x0 u2
                              λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t2)
                         by (or_introl . . previous)
                         we proved 
                            or
                              ex3_2
                                T
                                T
                                λu2:T.λt2:T.eq T (THead (Bind Void) x0 x1) (THead (Bind Void) u2 t2)
                                λu2:T.λ:T.pr3 c x0 u2
                                λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t2)
                              pr3 (CHead c (Bind Void) x0) x1 (lift (S OO (THead (Bind Void) x0 x1))
                         by (eq_ind_r . . . previous . H1)
                         we proved 
                            or
                              ex3_2
                                T
                                T
                                λu2:T.λt2:T.eq T t (THead (Bind Void) u2 t2)
                                λu2:T.λ:T.pr3 c x0 u2
                                λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t2)
                              pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t)

                         x0:T
                           .x1:T
                             .H1:eq T t (THead (Bind Void) x0 x1)
                               .or
                                 ex3_2
                                   T
                                   T
                                   λu2:T.λt2:T.eq T t (THead (Bind Void) u2 t2)
                                   λu2:T.λ:T.pr3 c x0 u2
                                   λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t2)
                                 pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t)
                case pr3_sing : t2:T t3:T H1:pr2 c t3 t2 t4:T H2:pr3 c t2 t4 
                   the thesis becomes 
                   x0:T
                     .x1:T
                       .H4:eq T t3 (THead (Bind Void) x0 x1)
                         .or
                           ex3_2
                             T
                             T
                             λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                             λu2:T.λ:T.pr3 c x0 u2
                             λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                           pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)
                   (H3) by induction hypothesis we know 
                      x0:T
                        .x1:T
                          .eq T t2 (THead (Bind Void) x0 x1)
                            (or
                                 ex3_2
                                   T
                                   T
                                   λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                   λu2:T.λ:T.pr3 c x0 u2
                                   λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                                 pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4))
                       assume x0T
                       assume x1T
                       suppose H4eq T t3 (THead (Bind Void) x0 x1)
                         (H5
                            we proceed by induction on H4 to prove pr2 c (THead (Bind Void) x0 x1) t2
                               case refl_equal : 
                                  the thesis becomes the hypothesis H1
pr2 c (THead (Bind Void) x0 x1) t2
                         end of H5
                         (H6
                            by (pr2_gen_void . . . . H5)

                               or
                                 ex3_2
                                   T
                                   T
                                   λu2:T.λt2:T.eq T t2 (THead (Bind Void) u2 t2)
                                   λu2:T.λ:T.pr2 c x0 u2
                                   λ:T.λt2:T.b:B.u:T.(pr2 (CHead c (Bind b) u) x1 t2)
                                 b:B.u:T.(pr2 (CHead c (Bind b) u) x1 (lift (S OO t2))
                         end of H6
                         we proceed by induction on H6 to prove 
                            or
                              ex3_2
                                T
                                T
                                λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                λu2:T.λ:T.pr3 c x0 u2
                                λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                              pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)
                            case or_introl : H7:ex3_2 T T λu2:T.λt5:T.eq T t2 (THead (Bind Void) u2 t5) λu2:T.λ:T.pr2 c x0 u2 λ:T.λt5:T.b:B.u:T.(pr2 (CHead c (Bind b) u) x1 t5) 
                               the thesis becomes 
                               or
                                 ex3_2
                                   T
                                   T
                                   λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                   λu2:T.λ:T.pr3 c x0 u2
                                   λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                                 pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)
                                  we proceed by induction on H7 to prove 
                                     or
                                       ex3_2
                                         T
                                         T
                                         λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                         λu2:T.λ:T.pr3 c x0 u2
                                         λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                                       pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)
                                     case ex3_2_intro : x2:T x3:T H8:eq T t2 (THead (Bind Void) x2 x3) H9:pr2 c x0 x2 H10:b:B.u:T.(pr2 (CHead c (Bind b) u) x1 x3) 
                                        the thesis becomes 
                                        or
                                          ex3_2
                                            T
                                            T
                                            λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                            λu2:T.λ:T.pr3 c x0 u2
                                            λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                                          pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)
                                           (H11
                                              we proceed by induction on H8 to prove 
                                                 x4:T
                                                   .x5:T
                                                     .eq T (THead (Bind Void) x2 x3) (THead (Bind Void) x4 x5)
                                                       (or
                                                            ex3_2
                                                              T
                                                              T
                                                              λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                                              λu2:T.λ:T.pr3 c x4 u2
                                                              λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x5 t5)
                                                            pr3 (CHead c (Bind Void) x4) x5 (lift (S OO t4))
                                                 case refl_equal : 
                                                    the thesis becomes the hypothesis H3

                                                 x4:T
                                                   .x5:T
                                                     .eq T (THead (Bind Void) x2 x3) (THead (Bind Void) x4 x5)
                                                       (or
                                                            ex3_2
                                                              T
                                                              T
                                                              λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                                              λu2:T.λ:T.pr3 c x4 u2
                                                              λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x5 t5)
                                                            pr3 (CHead c (Bind Void) x4) x5 (lift (S OO t4))
                                           end of H11
                                           (H12
                                              by (refl_equal . .)
                                              we proved eq T (THead (Bind Void) x2 x3) (THead (Bind Void) x2 x3)
                                              by (H11 . . previous)

                                                 or
                                                   ex3_2
                                                     T
                                                     T
                                                     λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                                     λu2:T.λ:T.pr3 c x2 u2
                                                     λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x3 t5)
                                                   pr3 (CHead c (Bind Void) x2) x3 (lift (S OO t4)
                                           end of H12
                                           we proceed by induction on H12 to prove 
                                              or
                                                ex3_2
                                                  T
                                                  T
                                                  λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                                  λu2:T.λ:T.pr3 c x0 u2
                                                  λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                                                pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)
                                              case or_introl : H13:ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5) λu2:T.λ:T.pr3 c x2 u2 λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x3 t5) 
                                                 the thesis becomes 
                                                 or
                                                   ex3_2
                                                     T
                                                     T
                                                     λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                                     λu2:T.λ:T.pr3 c x0 u2
                                                     λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                                                   pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)
                                                    we proceed by induction on H13 to prove 
                                                       or
                                                         ex3_2
                                                           T
                                                           T
                                                           λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                                           λu2:T.λ:T.pr3 c x0 u2
                                                           λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                                                         pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)
                                                       case ex3_2_intro : x4:T x5:T H14:eq T t4 (THead (Bind Void) x4 x5) H15:pr3 c x2 x4 H16:b:B.u:T.(pr3 (CHead c (Bind b) u) x3 x5) 
                                                          the thesis becomes 
                                                          or
                                                            ex3_2
                                                              T
                                                              T
                                                              λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                                              λu2:T.λ:T.pr3 c x0 u2
                                                              λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                                                            pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)
                                                             (h1
                                                                by (pr3_sing . . . H9 . H15)
pr3 c x0 x4
                                                             end of h1
                                                             (h2
                                                                 assume bB
                                                                 assume uT
                                                                   (h1
                                                                      by (H10 . .)
pr2 (CHead c (Bind b) u) x1 x3
                                                                   end of h1
                                                                   (h2
                                                                      by (H16 . .)
pr3 (CHead c (Bind b) u) x3 x5
                                                                   end of h2
                                                                   by (pr3_sing . . . h1 . h2)
                                                                   we proved pr3 (CHead c (Bind b) u) x1 x5
b:B.u:T.(pr3 (CHead c (Bind b) u) x1 x5)
                                                             end of h2
                                                             by (ex3_2_intro . . . . . . . H14 h1 h2)
                                                             we proved 
                                                                ex3_2
                                                                  T
                                                                  T
                                                                  λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                                                  λu2:T.λ:T.pr3 c x0 u2
                                                                  λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                                                             by (or_introl . . previous)

                                                                or
                                                                  ex3_2
                                                                    T
                                                                    T
                                                                    λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                                                    λu2:T.λ:T.pr3 c x0 u2
                                                                    λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                                                                  pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)

                                                       or
                                                         ex3_2
                                                           T
                                                           T
                                                           λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                                           λu2:T.λ:T.pr3 c x0 u2
                                                           λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                                                         pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)
                                              case or_intror : H13:pr3 (CHead c (Bind Void) x2) x3 (lift (S OO t4) 
                                                 the thesis becomes 
                                                 or
                                                   ex3_2
                                                     T
                                                     T
                                                     λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                                     λu2:T.λ:T.pr3 c x0 u2
                                                     λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                                                   pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)
                                                    (h1
                                                       by (H10 . .)
pr2 (CHead c (Bind Void) x0) x1 x3
                                                    end of h1
                                                    (h2
                                                       by (pr3_pr2_pr3_t . . . . . H13 . H9)
pr3 (CHead c (Bind Void) x0) x3 (lift (S OO t4)
                                                    end of h2
                                                    by (pr3_sing . . . h1 . h2)
                                                    we proved pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)
                                                    by (or_intror . . previous)

                                                       or
                                                         ex3_2
                                                           T
                                                           T
                                                           λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                                           λu2:T.λ:T.pr3 c x0 u2
                                                           λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                                                         pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)

                                              or
                                                ex3_2
                                                  T
                                                  T
                                                  λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                                  λu2:T.λ:T.pr3 c x0 u2
                                                  λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                                                pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)

                                     or
                                       ex3_2
                                         T
                                         T
                                         λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                         λu2:T.λ:T.pr3 c x0 u2
                                         λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                                       pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)
                            case or_intror : H7:b:B.u:T.(pr2 (CHead c (Bind b) u) x1 (lift (S OO t2)) 
                               the thesis becomes 
                               or
                                 ex3_2
                                   T
                                   T
                                   λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                   λu2:T.λ:T.pr3 c x0 u2
                                   λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                                 pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)
                                  (h1
                                     by (H7 . .)
pr2 (CHead c (Bind Void) x0) x1 (lift (S OO t2)
                                  end of h1
                                  (h2
                                     by (drop_refl .)
                                     we proved drop O O c c
                                     that is equivalent to drop (r (Bind VoidOO c c
                                     by (drop_drop . . . . previous .)
                                     we proved drop (S OO (CHead c (Bind Void) x0) c
                                     by (pr3_lift . . . . previous . . H2)
pr3 (CHead c (Bind Void) x0) (lift (S OO t2) (lift (S OO t4)
                                  end of h2
                                  by (pr3_sing . . . h1 . h2)
                                  we proved pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)
                                  by (or_intror . . previous)

                                     or
                                       ex3_2
                                         T
                                         T
                                         λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                         λu2:T.λ:T.pr3 c x0 u2
                                         λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                                       pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)
                         we proved 
                            or
                              ex3_2
                                T
                                T
                                λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                λu2:T.λ:T.pr3 c x0 u2
                                λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                              pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)

                         x0:T
                           .x1:T
                             .H4:eq T t3 (THead (Bind Void) x0 x1)
                               .or
                                 ex3_2
                                   T
                                   T
                                   λu2:T.λt5:T.eq T t4 (THead (Bind Void) u2 t5)
                                   λu2:T.λ:T.pr3 c x0 u2
                                   λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t5)
                                 pr3 (CHead c (Bind Void) x0) x1 (lift (S OO t4)
             we proved 
                x0:T
                  .x1:T
                    .eq T y (THead (Bind Void) x0 x1)
                      (or
                           ex3_2
                             T
                             T
                             λu2:T.λt2:T.eq T x (THead (Bind Void) u2 t2)
                             λu2:T.λ:T.pr3 c x0 u2
                             λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x1 t2)
                           pr3 (CHead c (Bind Void) x0) x1 (lift (S OO x))
             by (unintro . . . previous)
             we proved 
                x0:T
                  .eq T y (THead (Bind Void) u1 x0)
                    (or
                         ex3_2
                           T
                           T
                           λu2:T.λt2:T.eq T x (THead (Bind Void) u2 t2)
                           λu2:T.λ:T.pr3 c u1 u2
                           λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) x0 t2)
                         pr3 (CHead c (Bind Void) u1) x0 (lift (S OO x))
             by (unintro . . . previous)
             we proved 
                eq T y (THead (Bind Void) u1 t1)
                  (or
                       ex3_2
                         T
                         T
                         λu2:T.λt2:T.eq T x (THead (Bind Void) u2 t2)
                         λu2:T.λ:T.pr3 c u1 u2
                         λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t1 t2)
                       pr3 (CHead c (Bind Void) u1) t1 (lift (S OO x))
          we proved 
             y:T
               .pr3 c y x
                 (eq T y (THead (Bind Void) u1 t1)
                      (or
                           ex3_2
                             T
                             T
                             λu2:T.λt2:T.eq T x (THead (Bind Void) u2 t2)
                             λu2:T.λ:T.pr3 c u1 u2
                             λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t1 t2)
                           pr3 (CHead c (Bind Void) u1) t1 (lift (S OO x)))
          by (insert_eq . . . . previous H)
          we proved 
             or
               ex3_2
                 T
                 T
                 λu2:T.λt2:T.eq T x (THead (Bind Void) u2 t2)
                 λu2:T.λ:T.pr3 c u1 u2
                 λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t1 t2)
               pr3 (CHead c (Bind Void) u1) t1 (lift (S OO x)
       we proved 
          c:C
            .u1:T
              .t1:T
                .x:T
                  .pr3 c (THead (Bind Void) u1 t1) x
                    (or
                         ex3_2
                           T
                           T
                           λu2:T.λt2:T.eq T x (THead (Bind Void) u2 t2)
                           λu2:T.λ:T.pr3 c u1 u2
                           λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t1 t2)
                         pr3 (CHead c (Bind Void) u1) t1 (lift (S OO x))