DEFINITION pr3_gen_appl()
TYPE =
       c:C
         .u1:T
           .t1:T
             .x:T
               .pr3 c (THead (Flat Appl) u1 t1) x
                 (or3
                      ex3_2 T T λu2:T.λt2:T.eq T x (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr3 c u1 u2 λ:T.λt2:T.pr3 c t1 t2
                      ex4_4
                        T
                        T
                        T
                        T
                        λ:T.λ:T.λu2:T.λt2:T.pr3 c (THead (Bind Abbr) u2 t2) x
                        λ:T.λ:T.λu2:T.λ:T.pr3 c u1 u2
                        λy1:T.λz1:T.λ:T.λ:T.pr3 c t1 (THead (Bind Abst) y1 z1)
                        λ:T.λz1:T.λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t2)
                      ex6_6
                        B
                        T
                        T
                        T
                        T
                        T
                        λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                        λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c t1 (THead (Bind b) y1 z1)
                        λb:B
                          .λ:T
                            .λ:T
                              .λz2:T
                                .λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) x
                        λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c u1 u2
                        λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                        λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2)
BODY =
        assume cC
        assume u1T
        assume t1T
        assume xT
        suppose Hpr3 c (THead (Flat Appl) u1 t1) x
           assume yT
           suppose H0pr3 c y x
             we proceed by induction on H0 to prove 
                x0:T
                  .x1:T
                    .eq T y (THead (Flat Appl) x0 x1)
                      (or3
                           ex3_2 T T λu2:T.λt2:T.eq T x (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt2:T.pr3 c x1 t2
                           ex4_4
                             T
                             T
                             T
                             T
                             λ:T.λ:T.λu2:T.λt2:T.pr3 c (THead (Bind Abbr) u2 t2) x
                             λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                             λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                             λ:T.λz1:T.λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t2)
                           ex6_6
                             B
                             T
                             T
                             T
                             T
                             T
                             λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                             λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                             λb:B
                               .λ:T
                                 .λ:T
                                   .λz2:T
                                     .λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) x
                             λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                             λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                             λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2)
                case pr3_refl : t:T 
                   the thesis becomes 
                   x0:T
                     .x1:T
                       .H1:eq T t (THead (Flat Appl) x0 x1)
                         .or3
                           ex3_2 T T λu2:T.λt2:T.eq T t (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt2:T.pr3 c x1 t2
                           ex4_4
                             T
                             T
                             T
                             T
                             λ:T.λ:T.λu2:T.λt2:T.pr3 c (THead (Bind Abbr) u2 t2) t
                             λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                             λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                             λ:T.λz1:T.λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t2)
                           ex6_6
                             B
                             T
                             T
                             T
                             T
                             T
                             λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                             λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                             λb:B
                               .λ:T
                                 .λ:T
                                   .λz2:T
                                     .λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t
                             λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                             λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                             λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                       assume x0T
                       assume x1T
                       suppose H1eq T t (THead (Flat Appl) x0 x1)
                         (h1
                            by (refl_equal . .)
eq T (THead (Flat Appl) x0 x1) (THead (Flat Appl) x0 x1)
                         end of h1
                         (h2by (pr3_refl . .) we proved pr3 c x0 x0
                         (h3by (pr3_refl . .) we proved pr3 c x1 x1
                         by (ex3_2_intro . . . . . . . h1 h2 h3)
                         we proved 
                            ex3_2
                              T
                              T
                              λu2:T.λt2:T.eq T (THead (Flat Appl) x0 x1) (THead (Flat Appl) u2 t2)
                              λu2:T.λ:T.pr3 c x0 u2
                              λ:T.λt2:T.pr3 c x1 t2
                         by (or3_intro0 . . . previous)
                         we proved 
                            or3
                              ex3_2
                                T
                                T
                                λu2:T.λt2:T.eq T (THead (Flat Appl) x0 x1) (THead (Flat Appl) u2 t2)
                                λu2:T.λ:T.pr3 c x0 u2
                                λ:T.λt2:T.pr3 c x1 t2
                              ex4_4
                                T
                                T
                                T
                                T
                                λ:T.λ:T.λu2:T.λt2:T.pr3 c (THead (Bind Abbr) u2 t2) (THead (Flat Appl) x0 x1)
                                λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                λ:T.λz1:T.λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t2)
                              ex6_6
                                B
                                T
                                T
                                T
                                T
                                T
                                λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                λb:B
                                  .λ:T
                                    .λ:T
                                      .λz2:T
                                        .λu2:T
                                          .λy2:T
                                            .pr3
                                              c
                                              THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)
                                              THead (Flat Appl) x0 x1
                                λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                         by (eq_ind_r . . . previous . H1)
                         we proved 
                            or3
                              ex3_2 T T λu2:T.λt2:T.eq T t (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt2:T.pr3 c x1 t2
                              ex4_4
                                T
                                T
                                T
                                T
                                λ:T.λ:T.λu2:T.λt2:T.pr3 c (THead (Bind Abbr) u2 t2) t
                                λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                λ:T.λz1:T.λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t2)
                              ex6_6
                                B
                                T
                                T
                                T
                                T
                                T
                                λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                λb:B
                                  .λ:T
                                    .λ:T
                                      .λz2:T
                                        .λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t
                                λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2

                         x0:T
                           .x1:T
                             .H1:eq T t (THead (Flat Appl) x0 x1)
                               .or3
                                 ex3_2 T T λu2:T.λt2:T.eq T t (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt2:T.pr3 c x1 t2
                                 ex4_4
                                   T
                                   T
                                   T
                                   T
                                   λ:T.λ:T.λu2:T.λt2:T.pr3 c (THead (Bind Abbr) u2 t2) t
                                   λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                   λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                   λ:T.λz1:T.λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t2)
                                 ex6_6
                                   B
                                   T
                                   T
                                   T
                                   T
                                   T
                                   λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                   λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                   λb:B
                                     .λ:T
                                       .λ:T
                                         .λz2:T
                                           .λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t
                                   λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                   λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                   λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                case pr3_sing : t2:T t3:T H1:pr2 c t3 t2 t4:T H2:pr3 c t2 t4 
                   the thesis becomes 
                   x0:T
                     .x1:T
                       .H4:eq T t3 (THead (Flat Appl) x0 x1)
                         .or3
                           ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                           ex4_4
                             T
                             T
                             T
                             T
                             λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                             λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                             λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                             λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                           ex6_6
                             B
                             T
                             T
                             T
                             T
                             T
                             λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                             λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                             λb:B
                               .λ:T
                                 .λ:T
                                   .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                             λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                             λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                             λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                   (H3) by induction hypothesis we know 
                      x0:T
                        .x1:T
                          .eq T t2 (THead (Flat Appl) x0 x1)
                            (or3
                                 ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                 ex4_4
                                   T
                                   T
                                   T
                                   T
                                   λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                   λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                   λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                   λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                 ex6_6
                                   B
                                   T
                                   T
                                   T
                                   T
                                   T
                                   λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                   λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                   λb:B
                                     .λ:T
                                       .λ:T
                                         .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                   λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                   λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                   λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2)
                       assume x0T
                       assume x1T
                       suppose H4eq T t3 (THead (Flat Appl) x0 x1)
                         (H5
                            we proceed by induction on H4 to prove pr2 c (THead (Flat Appl) x0 x1) t2
                               case refl_equal : 
                                  the thesis becomes the hypothesis H1
pr2 c (THead (Flat Appl) x0 x1) t2
                         end of H5
                         (H6
                            by (pr2_gen_appl . . . . H5)

                               or3
                                 ex3_2 T T λu2:T.λt2:T.eq T t2 (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr2 c x0 u2 λ:T.λt2:T.pr2 c x1 t2
                                 ex4_4
                                   T
                                   T
                                   T
                                   T
                                   λy1:T.λz1:T.λ:T.λ:T.eq T x1 (THead (Bind Abst) y1 z1)
                                   λ:T.λ:T.λu2:T.λt2:T.eq T t2 (THead (Bind Abbr) u2 t2)
                                   λ:T.λ:T.λu2:T.λ:T.pr2 c x0 u2
                                   λ:T.λz1:T.λ:T.λt2:T.b:B.u:T.(pr2 (CHead c (Bind b) u) z1 t2)
                                 ex6_6
                                   B
                                   T
                                   T
                                   T
                                   T
                                   T
                                   λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                   λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T x1 (THead (Bind b) y1 z1)
                                   λb:B
                                     .λ:T
                                       .λ:T
                                         .λz2:T
                                           .λu2:T
                                             .λy2:T.eq T t2 (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2))
                                   λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr2 c x0 u2
                                   λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr2 c y1 y2
                                   λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr2 (CHead c (Bind b) y2) z1 z2
                         end of H6
                         we proceed by induction on H6 to prove 
                            or3
                              ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                              ex4_4
                                T
                                T
                                T
                                T
                                λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                              ex6_6
                                B
                                T
                                T
                                T
                                T
                                T
                                λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                λb:B
                                  .λ:T
                                    .λ:T
                                      .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                            case or3_intro0 : H7:ex3_2 T T λu2:T.λt5:T.eq T t2 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr2 c x0 u2 λ:T.λt5:T.pr2 c x1 t5 
                               the thesis becomes 
                               or3
                                 ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                 ex4_4
                                   T
                                   T
                                   T
                                   T
                                   λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                   λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                   λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                   λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                 ex6_6
                                   B
                                   T
                                   T
                                   T
                                   T
                                   T
                                   λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                   λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                   λb:B
                                     .λ:T
                                       .λ:T
                                         .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                   λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                   λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                   λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                  we proceed by induction on H7 to prove 
                                     or3
                                       ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                       ex4_4
                                         T
                                         T
                                         T
                                         T
                                         λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                         λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                         λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                         λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                       ex6_6
                                         B
                                         T
                                         T
                                         T
                                         T
                                         T
                                         λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                         λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                         λb:B
                                           .λ:T
                                             .λ:T
                                               .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                         λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                         λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                         λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                     case ex3_2_intro : x2:T x3:T H8:eq T t2 (THead (Flat Appl) x2 x3) H9:pr2 c x0 x2 H10:pr2 c x1 x3 
                                        the thesis becomes 
                                        or3
                                          ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                          ex4_4
                                            T
                                            T
                                            T
                                            T
                                            λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                            λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                            λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                            λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                          ex6_6
                                            B
                                            T
                                            T
                                            T
                                            T
                                            T
                                            λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                            λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                            λb:B
                                              .λ:T
                                                .λ:T
                                                  .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                            λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                            λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                            λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                           (H11
                                              we proceed by induction on H8 to prove 
                                                 x4:T
                                                   .x5:T
                                                     .eq T (THead (Flat Appl) x2 x3) (THead (Flat Appl) x4 x5)
                                                       (or3
                                                            ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x4 u2 λ:T.λt5:T.pr3 c x5 t5
                                                            ex4_4
                                                              T
                                                              T
                                                              T
                                                              T
                                                              λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                              λ:T.λ:T.λu2:T.λ:T.pr3 c x4 u2
                                                              λy1:T.λz1:T.λ:T.λ:T.pr3 c x5 (THead (Bind Abst) y1 z1)
                                                              λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                            ex6_6
                                                              B
                                                              T
                                                              T
                                                              T
                                                              T
                                                              T
                                                              λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                              λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x5 (THead (Bind b) y1 z1)
                                                              λb:B
                                                                .λ:T
                                                                  .λ:T
                                                                    .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                              λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x4 u2
                                                              λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                              λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2)
                                                 case refl_equal : 
                                                    the thesis becomes the hypothesis H3

                                                 x4:T
                                                   .x5:T
                                                     .eq T (THead (Flat Appl) x2 x3) (THead (Flat Appl) x4 x5)
                                                       (or3
                                                            ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x4 u2 λ:T.λt5:T.pr3 c x5 t5
                                                            ex4_4
                                                              T
                                                              T
                                                              T
                                                              T
                                                              λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                              λ:T.λ:T.λu2:T.λ:T.pr3 c x4 u2
                                                              λy1:T.λz1:T.λ:T.λ:T.pr3 c x5 (THead (Bind Abst) y1 z1)
                                                              λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                            ex6_6
                                                              B
                                                              T
                                                              T
                                                              T
                                                              T
                                                              T
                                                              λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                              λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x5 (THead (Bind b) y1 z1)
                                                              λb:B
                                                                .λ:T
                                                                  .λ:T
                                                                    .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                              λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x4 u2
                                                              λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                              λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2)
                                           end of H11
                                           (H13
                                              by (refl_equal . .)
                                              we proved eq T (THead (Flat Appl) x2 x3) (THead (Flat Appl) x2 x3)
                                              by (H11 . . previous)

                                                 or3
                                                   ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x2 u2 λ:T.λt5:T.pr3 c x3 t5
                                                   ex4_4
                                                     T
                                                     T
                                                     T
                                                     T
                                                     λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                     λ:T.λ:T.λu2:T.λ:T.pr3 c x2 u2
                                                     λy1:T.λz1:T.λ:T.λ:T.pr3 c x3 (THead (Bind Abst) y1 z1)
                                                     λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                   ex6_6
                                                     B
                                                     T
                                                     T
                                                     T
                                                     T
                                                     T
                                                     λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                     λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x3 (THead (Bind b) y1 z1)
                                                     λb:B
                                                       .λ:T
                                                         .λ:T
                                                           .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                     λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x2 u2
                                                     λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                     λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                           end of H13
                                           we proceed by induction on H13 to prove 
                                              or3
                                                ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                                ex4_4
                                                  T
                                                  T
                                                  T
                                                  T
                                                  λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                  λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                  λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                  λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                ex6_6
                                                  B
                                                  T
                                                  T
                                                  T
                                                  T
                                                  T
                                                  λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                  λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                  λb:B
                                                    .λ:T
                                                      .λ:T
                                                        .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                  λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                  λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                  λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                              case or3_intro0 : H14:ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x2 u2 λ:T.λt5:T.pr3 c x3 t5 
                                                 the thesis becomes 
                                                 or3
                                                   ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                                   ex4_4
                                                     T
                                                     T
                                                     T
                                                     T
                                                     λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                     λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                     λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                     λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                   ex6_6
                                                     B
                                                     T
                                                     T
                                                     T
                                                     T
                                                     T
                                                     λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                     λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                     λb:B
                                                       .λ:T
                                                         .λ:T
                                                           .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                     λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                     λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                     λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                                    we proceed by induction on H14 to prove 
                                                       or3
                                                         ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                                         ex4_4
                                                           T
                                                           T
                                                           T
                                                           T
                                                           λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                           λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                           λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                           λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                         ex6_6
                                                           B
                                                           T
                                                           T
                                                           T
                                                           T
                                                           T
                                                           λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                           λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                           λb:B
                                                             .λ:T
                                                               .λ:T
                                                                 .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                           λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                           λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                           λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                                       case ex3_2_intro : x4:T x5:T H15:eq T t4 (THead (Flat Appl) x4 x5) H16:pr3 c x2 x4 H17:pr3 c x3 x5 
                                                          the thesis becomes 
                                                          or3
                                                            ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                                            ex4_4
                                                              T
                                                              T
                                                              T
                                                              T
                                                              λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                              λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                              λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                              λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                            ex6_6
                                                              B
                                                              T
                                                              T
                                                              T
                                                              T
                                                              T
                                                              λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                              λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                              λb:B
                                                                .λ:T
                                                                  .λ:T
                                                                    .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                              λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                              λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                              λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                                             (h1
                                                                by (refl_equal . .)
eq T (THead (Flat Appl) x4 x5) (THead (Flat Appl) x4 x5)
                                                             end of h1
                                                             (h2
                                                                by (pr3_sing . . . H9 . H16)
pr3 c x0 x4
                                                             end of h2
                                                             (h3
                                                                by (pr3_sing . . . H10 . H17)
pr3 c x1 x5
                                                             end of h3
                                                             by (ex3_2_intro . . . . . . . h1 h2 h3)
                                                             we proved 
                                                                ex3_2
                                                                  T
                                                                  T
                                                                  λu2:T.λt5:T.eq T (THead (Flat Appl) x4 x5) (THead (Flat Appl) u2 t5)
                                                                  λu2:T.λ:T.pr3 c x0 u2
                                                                  λ:T.λt5:T.pr3 c x1 t5
                                                             by (or3_intro0 . . . previous)
                                                             we proved 
                                                                or3
                                                                  ex3_2
                                                                    T
                                                                    T
                                                                    λu2:T.λt5:T.eq T (THead (Flat Appl) x4 x5) (THead (Flat Appl) u2 t5)
                                                                    λu2:T.λ:T.pr3 c x0 u2
                                                                    λ:T.λt5:T.pr3 c x1 t5
                                                                  ex4_4
                                                                    T
                                                                    T
                                                                    T
                                                                    T
                                                                    λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) (THead (Flat Appl) x4 x5)
                                                                    λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                                    λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                                    λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                                  ex6_6
                                                                    B
                                                                    T
                                                                    T
                                                                    T
                                                                    T
                                                                    T
                                                                    λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                                    λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                                    λb:B
                                                                      .λ:T
                                                                        .λ:T
                                                                          .λz2:T
                                                                            .λu2:T
                                                                              .λy2:T
                                                                                .pr3
                                                                                  c
                                                                                  THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)
                                                                                  THead (Flat Appl) x4 x5
                                                                    λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                                    λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                                    λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                                             by (eq_ind_r . . . previous . H15)

                                                                or3
                                                                  ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                                                  ex4_4
                                                                    T
                                                                    T
                                                                    T
                                                                    T
                                                                    λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                                    λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                                    λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                                    λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                                  ex6_6
                                                                    B
                                                                    T
                                                                    T
                                                                    T
                                                                    T
                                                                    T
                                                                    λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                                    λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                                    λb:B
                                                                      .λ:T
                                                                        .λ:T
                                                                          .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                                    λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                                    λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                                    λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2

                                                       or3
                                                         ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                                         ex4_4
                                                           T
                                                           T
                                                           T
                                                           T
                                                           λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                           λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                           λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                           λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                         ex6_6
                                                           B
                                                           T
                                                           T
                                                           T
                                                           T
                                                           T
                                                           λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                           λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                           λb:B
                                                             .λ:T
                                                               .λ:T
                                                                 .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                           λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                           λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                           λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                              case or3_intro1 : H14:ex4_4 T T T T λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4 λ:T.λ:T.λu2:T.λ:T.pr3 c x2 u2 λy1:T.λz1:T.λ:T.λ:T.pr3 c x3 (THead (Bind Abst) y1 z1) λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5) 
                                                 the thesis becomes 
                                                 or3
                                                   ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                                   ex4_4
                                                     T
                                                     T
                                                     T
                                                     T
                                                     λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                     λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                     λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                     λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                   ex6_6
                                                     B
                                                     T
                                                     T
                                                     T
                                                     T
                                                     T
                                                     λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                     λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                     λb:B
                                                       .λ:T
                                                         .λ:T
                                                           .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                     λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                     λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                     λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                                    we proceed by induction on H14 to prove 
                                                       or3
                                                         ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                                         ex4_4
                                                           T
                                                           T
                                                           T
                                                           T
                                                           λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                           λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                           λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                           λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                         ex6_6
                                                           B
                                                           T
                                                           T
                                                           T
                                                           T
                                                           T
                                                           λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                           λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                           λb:B
                                                             .λ:T
                                                               .λ:T
                                                                 .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                           λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                           λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                           λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                                       case ex4_4_intro : x4:T x5:T x6:T x7:T H15:pr3 c (THead (Bind Abbr) x6 x7) t4 H16:pr3 c x2 x6 H17:pr3 c x3 (THead (Bind Abst) x4 x5) H18:b:B.u:T.(pr3 (CHead c (Bind b) u) x5 x7) 
                                                          the thesis becomes 
                                                          or3
                                                            ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                                            ex4_4
                                                              T
                                                              T
                                                              T
                                                              T
                                                              λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                              λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                              λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                              λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                            ex6_6
                                                              B
                                                              T
                                                              T
                                                              T
                                                              T
                                                              T
                                                              λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                              λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                              λb:B
                                                                .λ:T
                                                                  .λ:T
                                                                    .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                              λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                              λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                              λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                                             (h1
                                                                by (pr3_sing . . . H9 . H16)
pr3 c x0 x6
                                                             end of h1
                                                             (h2
                                                                by (pr3_sing . . . H10 . H17)
pr3 c x1 (THead (Bind Abst) x4 x5)
                                                             end of h2
                                                             by (ex4_4_intro . . . . . . . . . . . . H15 h1 h2 H18)
                                                             we proved 
                                                                ex4_4
                                                                  T
                                                                  T
                                                                  T
                                                                  T
                                                                  λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                                  λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                                  λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                                  λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                             by (or3_intro1 . . . previous)

                                                                or3
                                                                  ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                                                  ex4_4
                                                                    T
                                                                    T
                                                                    T
                                                                    T
                                                                    λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                                    λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                                    λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                                    λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                                  ex6_6
                                                                    B
                                                                    T
                                                                    T
                                                                    T
                                                                    T
                                                                    T
                                                                    λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                                    λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                                    λb:B
                                                                      .λ:T
                                                                        .λ:T
                                                                          .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                                    λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                                    λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                                    λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2

                                                       or3
                                                         ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                                         ex4_4
                                                           T
                                                           T
                                                           T
                                                           T
                                                           λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                           λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                           λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                           λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                         ex6_6
                                                           B
                                                           T
                                                           T
                                                           T
                                                           T
                                                           T
                                                           λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                           λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                           λb:B
                                                             .λ:T
                                                               .λ:T
                                                                 .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                           λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                           λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                           λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                              case or3_intro2 : H14:ex6_6 B T T T T T λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abstλb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x3 (THead (Bind b) y1 z1) λb:B.λ:T.λ:T.λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4 λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x2 u2 λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2 λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2 
                                                 the thesis becomes 
                                                 or3
                                                   ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                                   ex4_4
                                                     T
                                                     T
                                                     T
                                                     T
                                                     λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                     λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                     λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                     λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                   ex6_6
                                                     B
                                                     T
                                                     T
                                                     T
                                                     T
                                                     T
                                                     λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                     λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                     λb:B
                                                       .λ:T
                                                         .λ:T
                                                           .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                     λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                     λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                     λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                                    we proceed by induction on H14 to prove 
                                                       or3
                                                         ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                                         ex4_4
                                                           T
                                                           T
                                                           T
                                                           T
                                                           λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                           λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                           λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                           λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                         ex6_6
                                                           B
                                                           T
                                                           T
                                                           T
                                                           T
                                                           T
                                                           λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                           λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                           λb:B
                                                             .λ:T
                                                               .λ:T
                                                                 .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                           λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                           λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                           λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                                       case ex6_6_intro : x4:B x5:T x6:T x7:T x8:T x9:T H15:not (eq B x4 Abst) H16:pr3 c x3 (THead (Bind x4) x5 x6) H17:pr3 c (THead (Bind x4) x9 (THead (Flat Appl) (lift (S OO x8) x7)) t4 H18:pr3 c x2 x8 H19:pr3 c x5 x9 H20:pr3 (CHead c (Bind x4) x9) x6 x7 
                                                          the thesis becomes 
                                                          or3
                                                            ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                                            ex4_4
                                                              T
                                                              T
                                                              T
                                                              T
                                                              λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                              λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                              λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                              λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                            ex6_6
                                                              B
                                                              T
                                                              T
                                                              T
                                                              T
                                                              T
                                                              λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                              λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                              λb:B
                                                                .λ:T
                                                                  .λ:T
                                                                    .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                              λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                              λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                              λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                                             (h1
                                                                by (pr3_sing . . . H10 . H16)
pr3 c x1 (THead (Bind x4) x5 x6)
                                                             end of h1
                                                             (h2
                                                                by (pr3_sing . . . H9 . H18)
pr3 c x0 x8
                                                             end of h2
                                                             by (ex6_6_intro . . . . . . . . . . . . . . . . . . H15 h1 H17 h2 H19 H20)
                                                             we proved 
                                                                ex6_6
                                                                  B
                                                                  T
                                                                  T
                                                                  T
                                                                  T
                                                                  T
                                                                  λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                                  λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                                  λb:B
                                                                    .λ:T
                                                                      .λ:T
                                                                        .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                                  λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                                  λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                                  λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                                             by (or3_intro2 . . . previous)

                                                                or3
                                                                  ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                                                  ex4_4
                                                                    T
                                                                    T
                                                                    T
                                                                    T
                                                                    λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                                    λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                                    λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                                    λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                                  ex6_6
                                                                    B
                                                                    T
                                                                    T
                                                                    T
                                                                    T
                                                                    T
                                                                    λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                                    λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                                    λb:B
                                                                      .λ:T
                                                                        .λ:T
                                                                          .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                                    λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                                    λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                                    λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2

                                                       or3
                                                         ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                                         ex4_4
                                                           T
                                                           T
                                                           T
                                                           T
                                                           λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                           λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                           λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                           λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                         ex6_6
                                                           B
                                                           T
                                                           T
                                                           T
                                                           T
                                                           T
                                                           λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                           λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                           λb:B
                                                             .λ:T
                                                               .λ:T
                                                                 .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                           λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                           λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                           λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2

                                              or3
                                                ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                                ex4_4
                                                  T
                                                  T
                                                  T
                                                  T
                                                  λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                  λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                  λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                  λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                ex6_6
                                                  B
                                                  T
                                                  T
                                                  T
                                                  T
                                                  T
                                                  λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                  λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                  λb:B
                                                    .λ:T
                                                      .λ:T
                                                        .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                  λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                  λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                  λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2

                                     or3
                                       ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                       ex4_4
                                         T
                                         T
                                         T
                                         T
                                         λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                         λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                         λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                         λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                       ex6_6
                                         B
                                         T
                                         T
                                         T
                                         T
                                         T
                                         λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                         λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                         λb:B
                                           .λ:T
                                             .λ:T
                                               .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                         λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                         λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                         λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                            case or3_intro1 : H7:ex4_4 T T T T λy1:T.λz1:T.λ:T.λ:T.eq T x1 (THead (Bind Abst) y1 z1) λ:T.λ:T.λu2:T.λt5:T.eq T t2 (THead (Bind Abbr) u2 t5) λ:T.λ:T.λu2:T.λ:T.pr2 c x0 u2 λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr2 (CHead c (Bind b) u) z1 t5) 
                               the thesis becomes 
                               or3
                                 ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                 ex4_4
                                   T
                                   T
                                   T
                                   T
                                   λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                   λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                   λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                   λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                 ex6_6
                                   B
                                   T
                                   T
                                   T
                                   T
                                   T
                                   λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                   λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                   λb:B
                                     .λ:T
                                       .λ:T
                                         .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                   λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                   λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                   λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                  we proceed by induction on H7 to prove 
                                     or3
                                       ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                       ex4_4
                                         T
                                         T
                                         T
                                         T
                                         λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                         λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                         λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                         λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                       ex6_6
                                         B
                                         T
                                         T
                                         T
                                         T
                                         T
                                         λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                         λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                         λb:B
                                           .λ:T
                                             .λ:T
                                               .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                         λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                         λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                         λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                     case ex4_4_intro : x2:T x3:T x4:T x5:T H8:eq T x1 (THead (Bind Abst) x2 x3) H9:eq T t2 (THead (Bind Abbr) x4 x5) H10:pr2 c x0 x4 H11:b:B.u:T.(pr2 (CHead c (Bind b) u) x3 x5) 
                                        the thesis becomes 
                                        or3
                                          ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                          ex4_4
                                            T
                                            T
                                            T
                                            T
                                            λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                            λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                            λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                            λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                          ex6_6
                                            B
                                            T
                                            T
                                            T
                                            T
                                            T
                                            λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                            λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                            λb:B
                                              .λ:T
                                                .λ:T
                                                  .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                            λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                            λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                            λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                           (H13
                                              we proceed by induction on H9 to prove pr3 c (THead (Bind Abbr) x4 x5) t4
                                                 case refl_equal : 
                                                    the thesis becomes the hypothesis H2
pr3 c (THead (Bind Abbr) x4 x5) t4
                                           end of H13
                                           (h1by (pr3_pr2 . . . H10) we proved pr3 c x0 x4
                                           (h2
                                              by (pr3_refl . .)
pr3 c (THead (Bind Abst) x2 x3) (THead (Bind Abst) x2 x3)
                                           end of h2
                                           (h3
                                               assume bB
                                               assume uT
                                                 by (H11 . .)
                                                 we proved pr2 (CHead c (Bind b) u) x3 x5
                                                 by (pr3_pr2 . . . previous)
                                                 we proved pr3 (CHead c (Bind b) u) x3 x5
b:B.u:T.(pr3 (CHead c (Bind b) u) x3 x5)
                                           end of h3
                                           by (ex4_4_intro . . . . . . . . . . . . H13 h1 h2 h3)
                                           we proved 
                                              ex4_4
                                                T
                                                T
                                                T
                                                T
                                                λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                λy1:T.λz1:T.λ:T.λ:T.pr3 c (THead (Bind Abst) x2 x3) (THead (Bind Abst) y1 z1)
                                                λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                           by (or3_intro1 . . . previous)
                                           we proved 
                                              or3
                                                ex3_2
                                                  T
                                                  T
                                                  λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5)
                                                  λu2:T.λ:T.pr3 c x0 u2
                                                  λ:T.λt5:T.pr3 c (THead (Bind Abst) x2 x3) t5
                                                ex4_4
                                                  T
                                                  T
                                                  T
                                                  T
                                                  λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                  λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                  λy1:T.λz1:T.λ:T.λ:T.pr3 c (THead (Bind Abst) x2 x3) (THead (Bind Abst) y1 z1)
                                                  λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                ex6_6
                                                  B
                                                  T
                                                  T
                                                  T
                                                  T
                                                  T
                                                  λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                  λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c (THead (Bind Abst) x2 x3) (THead (Bind b) y1 z1)
                                                  λb:B
                                                    .λ:T
                                                      .λ:T
                                                        .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                  λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                  λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                  λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                           by (eq_ind_r . . . previous . H8)

                                              or3
                                                ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                                ex4_4
                                                  T
                                                  T
                                                  T
                                                  T
                                                  λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                  λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                  λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                  λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                ex6_6
                                                  B
                                                  T
                                                  T
                                                  T
                                                  T
                                                  T
                                                  λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                  λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                  λb:B
                                                    .λ:T
                                                      .λ:T
                                                        .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                  λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                  λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                  λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2

                                     or3
                                       ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                       ex4_4
                                         T
                                         T
                                         T
                                         T
                                         λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                         λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                         λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                         λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                       ex6_6
                                         B
                                         T
                                         T
                                         T
                                         T
                                         T
                                         λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                         λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                         λb:B
                                           .λ:T
                                             .λ:T
                                               .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                         λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                         λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                         λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                            case or3_intro2 : H7:ex6_6 B T T T T T λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abstλb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T x1 (THead (Bind b) y1 z1) λb:B.λ:T.λ:T.λz2:T.λu2:T.λy2:T.eq T t2 (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr2 c x0 u2 λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr2 c y1 y2 λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr2 (CHead c (Bind b) y2) z1 z2 
                               the thesis becomes 
                               or3
                                 ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                 ex4_4
                                   T
                                   T
                                   T
                                   T
                                   λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                   λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                   λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                   λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                 ex6_6
                                   B
                                   T
                                   T
                                   T
                                   T
                                   T
                                   λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                   λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                   λb:B
                                     .λ:T
                                       .λ:T
                                         .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                   λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                   λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                   λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                  we proceed by induction on H7 to prove 
                                     or3
                                       ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                       ex4_4
                                         T
                                         T
                                         T
                                         T
                                         λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                         λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                         λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                         λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                       ex6_6
                                         B
                                         T
                                         T
                                         T
                                         T
                                         T
                                         λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                         λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                         λb:B
                                           .λ:T
                                             .λ:T
                                               .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                         λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                         λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                         λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                     case ex6_6_intro : x2:B x3:T x4:T x5:T x6:T x7:T H8:not (eq B x2 Abst) H9:eq T x1 (THead (Bind x2) x3 x4) H10:eq T t2 (THead (Bind x2) x7 (THead (Flat Appl) (lift (S OO x6) x5)) H11:pr2 c x0 x6 H12:pr2 c x3 x7 H13:pr2 (CHead c (Bind x2) x7) x4 x5 
                                        the thesis becomes 
                                        or3
                                          ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                          ex4_4
                                            T
                                            T
                                            T
                                            T
                                            λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                            λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                            λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                            λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                          ex6_6
                                            B
                                            T
                                            T
                                            T
                                            T
                                            T
                                            λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                            λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                            λb:B
                                              .λ:T
                                                .λ:T
                                                  .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                            λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                            λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                            λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                           (H15
                                              we proceed by induction on H10 to prove pr3 c (THead (Bind x2) x7 (THead (Flat Appl) (lift (S OO x6) x5)) t4
                                                 case refl_equal : 
                                                    the thesis becomes the hypothesis H2
pr3 c (THead (Bind x2) x7 (THead (Flat Appl) (lift (S OO x6) x5)) t4
                                           end of H15
                                           (h1
                                              by (pr3_refl . .)
pr3 c (THead (Bind x2) x3 x4) (THead (Bind x2) x3 x4)
                                           end of h1
                                           (h2by (pr3_pr2 . . . H11) we proved pr3 c x0 x6
                                           (h3by (pr3_pr2 . . . H12) we proved pr3 c x3 x7
                                           (h4
                                              by (pr3_pr2 . . . H13)
pr3 (CHead c (Bind x2) x7) x4 x5
                                           end of h4
                                           by (ex6_6_intro . . . . . . . . . . . . . . . . . . H8 h1 H15 h2 h3 h4)
                                           we proved 
                                              ex6_6
                                                B
                                                T
                                                T
                                                T
                                                T
                                                T
                                                λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c (THead (Bind x2) x3 x4) (THead (Bind b) y1 z1)
                                                λb:B
                                                  .λ:T
                                                    .λ:T
                                                      .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                           by (or3_intro2 . . . previous)
                                           we proved 
                                              or3
                                                ex3_2
                                                  T
                                                  T
                                                  λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5)
                                                  λu2:T.λ:T.pr3 c x0 u2
                                                  λ:T.λt5:T.pr3 c (THead (Bind x2) x3 x4) t5
                                                ex4_4
                                                  T
                                                  T
                                                  T
                                                  T
                                                  λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                  λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                  λy1:T.λz1:T.λ:T.λ:T.pr3 c (THead (Bind x2) x3 x4) (THead (Bind Abst) y1 z1)
                                                  λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                ex6_6
                                                  B
                                                  T
                                                  T
                                                  T
                                                  T
                                                  T
                                                  λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                  λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c (THead (Bind x2) x3 x4) (THead (Bind b) y1 z1)
                                                  λb:B
                                                    .λ:T
                                                      .λ:T
                                                        .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                  λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                  λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                  λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                                           by (eq_ind_r . . . previous . H9)

                                              or3
                                                ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                                ex4_4
                                                  T
                                                  T
                                                  T
                                                  T
                                                  λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                                  λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                  λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                                  λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                                ex6_6
                                                  B
                                                  T
                                                  T
                                                  T
                                                  T
                                                  T
                                                  λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                  λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                                  λb:B
                                                    .λ:T
                                                      .λ:T
                                                        .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                                  λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                                  λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                                  λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2

                                     or3
                                       ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                       ex4_4
                                         T
                                         T
                                         T
                                         T
                                         λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                         λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                         λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                         λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                       ex6_6
                                         B
                                         T
                                         T
                                         T
                                         T
                                         T
                                         λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                         λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                         λb:B
                                           .λ:T
                                             .λ:T
                                               .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                         λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                         λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                         λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
                         we proved 
                            or3
                              ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                              ex4_4
                                T
                                T
                                T
                                T
                                λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                              ex6_6
                                B
                                T
                                T
                                T
                                T
                                T
                                λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                λb:B
                                  .λ:T
                                    .λ:T
                                      .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2

                         x0:T
                           .x1:T
                             .H4:eq T t3 (THead (Flat Appl) x0 x1)
                               .or3
                                 ex3_2 T T λu2:T.λt5:T.eq T t4 (THead (Flat Appl) u2 t5) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt5:T.pr3 c x1 t5
                                 ex4_4
                                   T
                                   T
                                   T
                                   T
                                   λ:T.λ:T.λu2:T.λt5:T.pr3 c (THead (Bind Abbr) u2 t5) t4
                                   λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                   λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                                   λ:T.λz1:T.λ:T.λt5:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t5)
                                 ex6_6
                                   B
                                   T
                                   T
                                   T
                                   T
                                   T
                                   λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                   λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                                   λb:B
                                     .λ:T
                                       .λ:T
                                         .λz2:T.λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) t4
                                   λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                                   λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                                   λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
             we proved 
                x0:T
                  .x1:T
                    .eq T y (THead (Flat Appl) x0 x1)
                      (or3
                           ex3_2 T T λu2:T.λt2:T.eq T x (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr3 c x0 u2 λ:T.λt2:T.pr3 c x1 t2
                           ex4_4
                             T
                             T
                             T
                             T
                             λ:T.λ:T.λu2:T.λt2:T.pr3 c (THead (Bind Abbr) u2 t2) x
                             λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                             λy1:T.λz1:T.λ:T.λ:T.pr3 c x1 (THead (Bind Abst) y1 z1)
                             λ:T.λz1:T.λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t2)
                           ex6_6
                             B
                             T
                             T
                             T
                             T
                             T
                             λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                             λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x1 (THead (Bind b) y1 z1)
                             λb:B
                               .λ:T
                                 .λ:T
                                   .λz2:T
                                     .λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) x
                             λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c x0 u2
                             λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                             λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2)
             by (unintro . . . previous)
             we proved 
                x0:T
                  .eq T y (THead (Flat Appl) u1 x0)
                    (or3
                         ex3_2 T T λu2:T.λt2:T.eq T x (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr3 c u1 u2 λ:T.λt2:T.pr3 c x0 t2
                         ex4_4
                           T
                           T
                           T
                           T
                           λ:T.λ:T.λu2:T.λt2:T.pr3 c (THead (Bind Abbr) u2 t2) x
                           λ:T.λ:T.λu2:T.λ:T.pr3 c u1 u2
                           λy1:T.λz1:T.λ:T.λ:T.pr3 c x0 (THead (Bind Abst) y1 z1)
                           λ:T.λz1:T.λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t2)
                         ex6_6
                           B
                           T
                           T
                           T
                           T
                           T
                           λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                           λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c x0 (THead (Bind b) y1 z1)
                           λb:B
                             .λ:T
                               .λ:T
                                 .λz2:T
                                   .λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) x
                           λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c u1 u2
                           λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                           λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2)
             by (unintro . . . previous)
             we proved 
                eq T y (THead (Flat Appl) u1 t1)
                  (or3
                       ex3_2 T T λu2:T.λt2:T.eq T x (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr3 c u1 u2 λ:T.λt2:T.pr3 c t1 t2
                       ex4_4
                         T
                         T
                         T
                         T
                         λ:T.λ:T.λu2:T.λt2:T.pr3 c (THead (Bind Abbr) u2 t2) x
                         λ:T.λ:T.λu2:T.λ:T.pr3 c u1 u2
                         λy1:T.λz1:T.λ:T.λ:T.pr3 c t1 (THead (Bind Abst) y1 z1)
                         λ:T.λz1:T.λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t2)
                       ex6_6
                         B
                         T
                         T
                         T
                         T
                         T
                         λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                         λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c t1 (THead (Bind b) y1 z1)
                         λb:B
                           .λ:T
                             .λ:T
                               .λz2:T
                                 .λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) x
                         λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c u1 u2
                         λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                         λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2)
          we proved 
             y:T
               .pr3 c y x
                 (eq T y (THead (Flat Appl) u1 t1)
                      (or3
                           ex3_2 T T λu2:T.λt2:T.eq T x (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr3 c u1 u2 λ:T.λt2:T.pr3 c t1 t2
                           ex4_4
                             T
                             T
                             T
                             T
                             λ:T.λ:T.λu2:T.λt2:T.pr3 c (THead (Bind Abbr) u2 t2) x
                             λ:T.λ:T.λu2:T.λ:T.pr3 c u1 u2
                             λy1:T.λz1:T.λ:T.λ:T.pr3 c t1 (THead (Bind Abst) y1 z1)
                             λ:T.λz1:T.λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t2)
                           ex6_6
                             B
                             T
                             T
                             T
                             T
                             T
                             λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                             λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c t1 (THead (Bind b) y1 z1)
                             λb:B
                               .λ:T
                                 .λ:T
                                   .λz2:T
                                     .λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) x
                             λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c u1 u2
                             λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                             λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2))
          by (insert_eq . . . . previous H)
          we proved 
             or3
               ex3_2 T T λu2:T.λt2:T.eq T x (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr3 c u1 u2 λ:T.λt2:T.pr3 c t1 t2
               ex4_4
                 T
                 T
                 T
                 T
                 λ:T.λ:T.λu2:T.λt2:T.pr3 c (THead (Bind Abbr) u2 t2) x
                 λ:T.λ:T.λu2:T.λ:T.pr3 c u1 u2
                 λy1:T.λz1:T.λ:T.λ:T.pr3 c t1 (THead (Bind Abst) y1 z1)
                 λ:T.λz1:T.λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t2)
               ex6_6
                 B
                 T
                 T
                 T
                 T
                 T
                 λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                 λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c t1 (THead (Bind b) y1 z1)
                 λb:B
                   .λ:T
                     .λ:T
                       .λz2:T
                         .λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) x
                 λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c u1 u2
                 λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                 λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2
       we proved 
          c:C
            .u1:T
              .t1:T
                .x:T
                  .pr3 c (THead (Flat Appl) u1 t1) x
                    (or3
                         ex3_2 T T λu2:T.λt2:T.eq T x (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr3 c u1 u2 λ:T.λt2:T.pr3 c t1 t2
                         ex4_4
                           T
                           T
                           T
                           T
                           λ:T.λ:T.λu2:T.λt2:T.pr3 c (THead (Bind Abbr) u2 t2) x
                           λ:T.λ:T.λu2:T.λ:T.pr3 c u1 u2
                           λy1:T.λz1:T.λ:T.λ:T.pr3 c t1 (THead (Bind Abst) y1 z1)
                           λ:T.λz1:T.λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) z1 t2)
                         ex6_6
                           B
                           T
                           T
                           T
                           T
                           T
                           λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                           λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.pr3 c t1 (THead (Bind b) y1 z1)
                           λb:B
                             .λ:T
                               .λ:T
                                 .λz2:T
                                   .λu2:T.λy2:T.pr3 c (THead (Bind b) y2 (THead (Flat Appl) (lift (S OO u2) z2)) x
                           λ:B.λ:T.λ:T.λ:T.λu2:T.λ:T.pr3 c u1 u2
                           λ:B.λy1:T.λ:T.λ:T.λ:T.λy2:T.pr3 c y1 y2
                           λb:B.λ:T.λz1:T.λz2:T.λ:T.λy2:T.pr3 (CHead c (Bind b) y2) z1 z2)