DEFINITION pr3_ind()
TYPE =
∀c:C
.∀P:T→T→Prop
.∀t:T.(P t t)
→(∀t:T.∀t1:T.(pr2 c t1 t)→∀t2:T.(pr3 c t t2)→(P t t2)→(P t1 t2)
→∀t:T.∀t1:T.(pr3 c t t1)→(P t t1))
BODY =
assume c: C
assume P: T→T→Prop
suppose H: ∀t:T.(P t t)
suppose H1: ∀t:T.∀t1:T.(pr2 c t1 t)→∀t2:T.(pr3 c t t2)→(P t t2)→(P t1 t2)
(aux) by well-founded reasoning we prove ∀t:T.∀t1:T.(pr3 c t t1)→(P t t1)
assume t: T
assume t1: T
suppose H2: pr3 c t t1
by cases on H2 we prove P t t1
case pr3_refl t2:T ⇒
the thesis becomes P t2 t2
by (H .)
P t2 t2
case pr3_sing t2:T t3:T H3:pr2 c t3 t2 t4:T H4:pr3 c t2 t4 ⇒
the thesis becomes P t3 t4
by (aux . . H4)
we proved P t2 t4
by (H1 . . H3 . H4 previous)
P t3 t4
we proved P t t1
∀t:T.∀t1:T.(pr3 c t t1)→(P t t1)
done
consider aux
we proved ∀t:T.∀t1:T.(pr3 c t t1)→(P t t1)
we proved
∀c:C
.∀P:T→T→Prop
.∀t:T.(P t t)
→(∀t:T.∀t1:T.(pr2 c t1 t)→∀t2:T.(pr3 c t t2)→(P t t2)→(P t1 t2)
→∀t:T.∀t1:T.(pr3 c t t1)→(P t t1))