DEFINITION pr2_delta1()
TYPE =
∀c:C
.∀d:C
.∀u:T
.∀i:nat
.getl i c (CHead d (Bind Abbr) u)
→∀t1:T.∀t2:T.(pr0 t1 t2)→∀t:T.(subst1 i u t2 t)→(pr2 c t1 t)
BODY =
assume c: C
assume d: C
assume u: T
assume i: nat
suppose H: getl i c (CHead d (Bind Abbr) u)
assume t1: T
assume t2: T
suppose H0: pr0 t1 t2
assume t: T
suppose H1: subst1 i u t2 t
we proceed by induction on H1 to prove pr2 c t1 t
case subst1_refl : ⇒
the thesis becomes pr2 c t1 t2
by (pr2_free . . . H0)
pr2 c t1 t2
case subst1_single : t0:T H2:subst0 i u t2 t0 ⇒
the thesis becomes pr2 c t1 t0
by (pr2_delta . . . . H . . H0 . H2)
pr2 c t1 t0
we proved pr2 c t1 t
we proved
∀c:C
.∀d:C
.∀u:T
.∀i:nat
.getl i c (CHead d (Bind Abbr) u)
→∀t1:T.∀t2:T.(pr0 t1 t2)→∀t:T.(subst1 i u t2 t)→(pr2 c t1 t)