DEFINITION pr2_ind()
TYPE =
∀P:C→T→T→Prop
.∀c:C.∀t:T.∀t1:T.(pr0 t t1)→(P c t t1)
→(∀c:C
.∀c1:C
.∀t:T
.∀n:nat
.getl n c (CHead c1 (Bind Abbr) t)
→∀t1:T.∀t2:T.(pr0 t1 t2)→∀t3:T.(subst0 n t t2 t3)→(P c t1 t3)
→∀c:C.∀t:T.∀t1:T.(pr2 c t t1)→(P c t t1))
BODY =
assume P: C→T→T→Prop
suppose H: ∀c:C.∀t:T.∀t1:T.(pr0 t t1)→(P c t t1)
suppose H1:
∀c:C
.∀c1:C
.∀t:T
.∀n:nat
.getl n c (CHead c1 (Bind Abbr) t)
→∀t1:T.∀t2:T.(pr0 t1 t2)→∀t3:T.(subst0 n t t2 t3)→(P c t1 t3)
assume c: C
assume t: T
assume t1: T
suppose H2: pr2 c t t1
by cases on H2 we prove P c t t1
case pr2_free c1:C t2:T t3:T H3:pr0 t2 t3 ⇒
the thesis becomes P c1 t2 t3
by (H . . . H3)
P c1 t2 t3
case pr2_delta c1:C c2:C t2:T n:nat H3:getl n c1 (CHead c2 (Bind Abbr) t2) t3:T t4:T H4:pr0 t3 t4 t5:T H5:subst0 n t2 t4 t5 ⇒
the thesis becomes P c1 t3 t5
by (H1 . . . . H3 . . H4 . H5)
P c1 t3 t5
we proved P c t t1
we proved
∀P:C→T→T→Prop
.∀c:C.∀t:T.∀t1:T.(pr0 t t1)→(P c t t1)
→(∀c:C
.∀c1:C
.∀t:T
.∀n:nat
.getl n c (CHead c1 (Bind Abbr) t)
→∀t1:T.∀t2:T.(pr0 t1 t2)→∀t3:T.(subst0 n t t2 t3)→(P c t1 t3)
→∀c:C.∀t:T.∀t1:T.(pr2 c t t1)→(P c t t1))