DEFINITION pr2_ind()
TYPE =
       P:CTTProp
         .c:C.t:T.t1:T.(pr0 t t1)(P c t t1)
           (c:C
                  .c1:C
                    .t:T
                      .n:nat
                        .getl n c (CHead c1 (Bind Abbr) t)
                          t1:T.t2:T.(pr0 t1 t2)t3:T.(subst0 n t t2 t3)(P c t1 t3)
                c:C.t:T.t1:T.(pr2 c t t1)(P c t t1))
BODY =
        assume PCTTProp
        suppose Hc:C.t:T.t1:T.(pr0 t t1)(P c t t1)
        suppose H1
           c:C
             .c1:C
               .t:T
                 .n:nat
                   .getl n c (CHead c1 (Bind Abbr) t)
                     t1:T.t2:T.(pr0 t1 t2)t3:T.(subst0 n t t2 t3)(P c t1 t3)
        assume cC
        assume tT
        assume t1T
        suppose H2pr2 c t t1
          by cases on H2 we prove P c t t1
             case pr2_free c1:C t2:T t3:T H3:pr0 t2 t3 
                the thesis becomes P c1 t2 t3
                by (H . . . H3)
P c1 t2 t3
             case pr2_delta c1:C c2:C t2:T n:nat H3:getl n c1 (CHead c2 (Bind Abbr) t2) t3:T t4:T H4:pr0 t3 t4 t5:T H5:subst0 n t2 t4 t5 
                the thesis becomes P c1 t3 t5
                by (H1 . . . . H3 . . H4 . H5)
P c1 t3 t5
          we proved P c t t1
       we proved 
          P:CTTProp
            .c:C.t:T.t1:T.(pr0 t t1)(P c t t1)
              (c:C
                     .c1:C
                       .t:T
                         .n:nat
                           .getl n c (CHead c1 (Bind Abbr) t)
                             t1:T.t2:T.(pr0 t1 t2)t3:T.(subst0 n t t2 t3)(P c t1 t3)
                   c:C.t:T.t1:T.(pr2 c t t1)(P c t t1))