DEFINITION pr0_delta1()
TYPE =
∀u1:T
.∀u2:T
.pr0 u1 u2
→∀t1:T
.∀t2:T
.pr0 t1 t2
→∀w:T.(subst1 O u2 t2 w)→(pr0 (THead (Bind Abbr) u1 t1) (THead (Bind Abbr) u2 w))
BODY =
assume u1: T
assume u2: T
suppose H: pr0 u1 u2
assume t1: T
assume t2: T
suppose H0: pr0 t1 t2
assume w: T
suppose H1: subst1 O u2 t2 w
we proceed by induction on H1 to prove pr0 (THead (Bind Abbr) u1 t1) (THead (Bind Abbr) u2 w)
case subst1_refl : ⇒
the thesis becomes pr0 (THead (Bind Abbr) u1 t1) (THead (Bind Abbr) u2 t2)
by (pr0_comp . . H . . H0 .)
pr0 (THead (Bind Abbr) u1 t1) (THead (Bind Abbr) u2 t2)
case subst1_single : t0:T H2:subst0 O u2 t2 t0 ⇒
the thesis becomes pr0 (THead (Bind Abbr) u1 t1) (THead (Bind Abbr) u2 t0)
by (pr0_delta . . H . . H0 . H2)
pr0 (THead (Bind Abbr) u1 t1) (THead (Bind Abbr) u2 t0)
we proved pr0 (THead (Bind Abbr) u1 t1) (THead (Bind Abbr) u2 w)
we proved
∀u1:T
.∀u2:T
.pr0 u1 u2
→∀t1:T
.∀t2:T
.pr0 t1 t2
→∀w:T.(subst1 O u2 t2 w)→(pr0 (THead (Bind Abbr) u1 t1) (THead (Bind Abbr) u2 w))