DEFINITION pr0_gen_lref()
TYPE =
       x:T.n:nat.(pr0 (TLRef n) x)(eq T x (TLRef n))
BODY =
        assume xT
        assume nnat
        suppose Hpr0 (TLRef n) x
           assume yT
           suppose H0pr0 y x
             we proceed by induction on H0 to prove (eq T y (TLRef n))(eq T x y)
                case pr0_refl : t:T 
                   the thesis becomes H1:(eq T t (TLRef n)).(eq T t t)
                      suppose H1eq T t (TLRef n)
                         (H2
                            by (f_equal . . . . . H1)
                            we proved eq T t (TLRef n)
eq T (λe:T.e t) (λe:T.e (TLRef n))
                         end of H2
                         by (refl_equal . .)
                         we proved eq T (TLRef n) (TLRef n)
                         by (eq_ind_r . . . previous . H2)
                         we proved eq T t t
H1:(eq T t (TLRef n)).(eq T t t)
                case pr0_comp : u1:T u2:T :pr0 u1 u2 t1:T t2:T :pr0 t1 t2 k:K 
                   the thesis becomes H5:(eq T (THead k u1 t1) (TLRef n)).(eq T (THead k u2 t2) (THead k u1 t1))
                   () by induction hypothesis we know (eq T u1 (TLRef n))(eq T u2 u1)
                   () by induction hypothesis we know (eq T t1 (TLRef n))(eq T t2 t1)
                      suppose H5eq T (THead k u1 t1) (TLRef n)
                         (H6
                            we proceed by induction on H5 to prove 
                               <λ:T.Prop>
                                 CASE TLRef n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead k u1 t1 OF
                                      TSort False
                                    | TLRef False
                                    | THead   True
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead k u1 t1 OF
                                            TSort False
                                          | TLRef False
                                          | THead   True

                               <λ:T.Prop>
                                 CASE TLRef n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                         end of H6
                         consider H6
                         we proved 
                            <λ:T.Prop>
                              CASE TLRef n OF
                                TSort False
                              | TLRef False
                              | THead   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove eq T (THead k u2 t2) (THead k u1 t1)
                         we proved eq T (THead k u2 t2) (THead k u1 t1)
H5:(eq T (THead k u1 t1) (TLRef n)).(eq T (THead k u2 t2) (THead k u1 t1))
                case pr0_beta : u:T v1:T v2:T :pr0 v1 v2 t1:T t2:T :pr0 t1 t2 
                   the thesis becomes 
                   H5:eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t1)) (TLRef n)
                     .eq
                       T
                       THead (Bind Abbr) v2 t2
                       THead (Flat Appl) v1 (THead (Bind Abst) u t1)
                   () by induction hypothesis we know (eq T v1 (TLRef n))(eq T v2 v1)
                   () by induction hypothesis we know (eq T t1 (TLRef n))(eq T t2 t1)
                      suppose H5eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t1)) (TLRef n)
                         (H6
                            we proceed by induction on H5 to prove 
                               <λ:T.Prop>
                                 CASE TLRef n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead (Flat Appl) v1 (THead (Bind Abst) u t1) OF
                                      TSort False
                                    | TLRef False
                                    | THead   True
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead (Flat Appl) v1 (THead (Bind Abst) u t1) OF
                                            TSort False
                                          | TLRef False
                                          | THead   True

                               <λ:T.Prop>
                                 CASE TLRef n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                         end of H6
                         consider H6
                         we proved 
                            <λ:T.Prop>
                              CASE TLRef n OF
                                TSort False
                              | TLRef False
                              | THead   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove 
                            eq
                              T
                              THead (Bind Abbr) v2 t2
                              THead (Flat Appl) v1 (THead (Bind Abst) u t1)
                         we proved 
                            eq
                              T
                              THead (Bind Abbr) v2 t2
                              THead (Flat Appl) v1 (THead (Bind Abst) u t1)

                         H5:eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t1)) (TLRef n)
                           .eq
                             T
                             THead (Bind Abbr) v2 t2
                             THead (Flat Appl) v1 (THead (Bind Abst) u t1)
                case pr0_upsilon : b:B :not (eq B b Abst) v1:T v2:T :pr0 v1 v2 u1:T u2:T :pr0 u1 u2 t1:T t2:T :pr0 t1 t2 
                   the thesis becomes 
                   H8:eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t1)) (TLRef n)
                     .eq
                       T
                       THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                       THead (Flat Appl) v1 (THead (Bind b) u1 t1)
                   () by induction hypothesis we know (eq T v1 (TLRef n))(eq T v2 v1)
                   () by induction hypothesis we know (eq T u1 (TLRef n))(eq T u2 u1)
                   () by induction hypothesis we know (eq T t1 (TLRef n))(eq T t2 t1)
                      suppose H8eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t1)) (TLRef n)
                         (H9
                            we proceed by induction on H8 to prove 
                               <λ:T.Prop>
                                 CASE TLRef n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead (Flat Appl) v1 (THead (Bind b) u1 t1) OF
                                      TSort False
                                    | TLRef False
                                    | THead   True
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead (Flat Appl) v1 (THead (Bind b) u1 t1) OF
                                            TSort False
                                          | TLRef False
                                          | THead   True

                               <λ:T.Prop>
                                 CASE TLRef n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                         end of H9
                         consider H9
                         we proved 
                            <λ:T.Prop>
                              CASE TLRef n OF
                                TSort False
                              | TLRef False
                              | THead   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove 
                            eq
                              T
                              THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                              THead (Flat Appl) v1 (THead (Bind b) u1 t1)
                         we proved 
                            eq
                              T
                              THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                              THead (Flat Appl) v1 (THead (Bind b) u1 t1)

                         H8:eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t1)) (TLRef n)
                           .eq
                             T
                             THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                             THead (Flat Appl) v1 (THead (Bind b) u1 t1)
                case pr0_delta : u1:T u2:T :pr0 u1 u2 t1:T t2:T :pr0 t1 t2 w:T :subst0 O u2 t2 w 
                   the thesis becomes 
                   H6:eq T (THead (Bind Abbr) u1 t1) (TLRef n)
                     .eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u1 t1)
                   () by induction hypothesis we know (eq T u1 (TLRef n))(eq T u2 u1)
                   () by induction hypothesis we know (eq T t1 (TLRef n))(eq T t2 t1)
                      suppose H6eq T (THead (Bind Abbr) u1 t1) (TLRef n)
                         (H7
                            we proceed by induction on H6 to prove 
                               <λ:T.Prop>
                                 CASE TLRef n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead (Bind Abbr) u1 t1 OF
                                      TSort False
                                    | TLRef False
                                    | THead   True
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead (Bind Abbr) u1 t1 OF
                                            TSort False
                                          | TLRef False
                                          | THead   True

                               <λ:T.Prop>
                                 CASE TLRef n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                         end of H7
                         consider H7
                         we proved 
                            <λ:T.Prop>
                              CASE TLRef n OF
                                TSort False
                              | TLRef False
                              | THead   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u1 t1)
                         we proved eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u1 t1)

                         H6:eq T (THead (Bind Abbr) u1 t1) (TLRef n)
                           .eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u1 t1)
                case pr0_zeta : b:B :not (eq B b Abst) t1:T t2:T :pr0 t1 t2 u:T 
                   the thesis becomes 
                   H4:eq T (THead (Bind b) u (lift (S OO t1)) (TLRef n)
                     .eq T t2 (THead (Bind b) u (lift (S OO t1))
                   () by induction hypothesis we know (eq T t1 (TLRef n))(eq T t2 t1)
                      suppose H4eq T (THead (Bind b) u (lift (S OO t1)) (TLRef n)
                         (H5
                            we proceed by induction on H4 to prove 
                               <λ:T.Prop>
                                 CASE TLRef n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead (Bind b) u (lift (S OO t1) OF
                                      TSort False
                                    | TLRef False
                                    | THead   True
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead (Bind b) u (lift (S OO t1) OF
                                            TSort False
                                          | TLRef False
                                          | THead   True

                               <λ:T.Prop>
                                 CASE TLRef n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                         end of H5
                         consider H5
                         we proved 
                            <λ:T.Prop>
                              CASE TLRef n OF
                                TSort False
                              | TLRef False
                              | THead   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove eq T t2 (THead (Bind b) u (lift (S OO t1))
                         we proved eq T t2 (THead (Bind b) u (lift (S OO t1))

                         H4:eq T (THead (Bind b) u (lift (S OO t1)) (TLRef n)
                           .eq T t2 (THead (Bind b) u (lift (S OO t1))
                case pr0_tau : t1:T t2:T :pr0 t1 t2 u:T 
                   the thesis becomes 
                   H3:eq T (THead (Flat Cast) u t1) (TLRef n)
                     .eq T t2 (THead (Flat Cast) u t1)
                   () by induction hypothesis we know (eq T t1 (TLRef n))(eq T t2 t1)
                      suppose H3eq T (THead (Flat Cast) u t1) (TLRef n)
                         (H4
                            we proceed by induction on H3 to prove 
                               <λ:T.Prop>
                                 CASE TLRef n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead (Flat Cast) u t1 OF
                                      TSort False
                                    | TLRef False
                                    | THead   True
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead (Flat Cast) u t1 OF
                                            TSort False
                                          | TLRef False
                                          | THead   True

                               <λ:T.Prop>
                                 CASE TLRef n OF
                                   TSort False
                                 | TLRef False
                                 | THead   True
                         end of H4
                         consider H4
                         we proved 
                            <λ:T.Prop>
                              CASE TLRef n OF
                                TSort False
                              | TLRef False
                              | THead   True
                         that is equivalent to False
                         we proceed by induction on the previous result to prove eq T t2 (THead (Flat Cast) u t1)
                         we proved eq T t2 (THead (Flat Cast) u t1)

                         H3:eq T (THead (Flat Cast) u t1) (TLRef n)
                           .eq T t2 (THead (Flat Cast) u t1)
             we proved (eq T y (TLRef n))(eq T x y)
          we proved y:T.(pr0 y x)(eq T y (TLRef n))(eq T x y)
          by (insert_eq . . . . previous H)
          we proved eq T x (TLRef n)
       we proved x:T.n:nat.(pr0 (TLRef n) x)(eq T x (TLRef n))