DEFINITION pr0_gen_lift()
TYPE =
       t1:T.x:T.h:nat.d:nat.(pr0 (lift h d t1) x)(ex2 T λt2:T.eq T x (lift h d t2) λt2:T.pr0 t1 t2)
BODY =
        assume t1T
        assume xT
        assume hnat
        assume dnat
        suppose Hpr0 (lift h d t1) x
           assume yT
           suppose H0pr0 y x
             we proceed by induction on H0 to prove x0:T.x1:nat.(eq T y (lift h x1 x0))(ex2 T λt2:T.eq T x (lift h x1 t2) λt2:T.pr0 x0 t2)
                case pr0_refl : t:T 
                   the thesis becomes x0:T.x1:nat.H1:(eq T t (lift h x1 x0)).(ex2 T λt2:T.eq T t (lift h x1 t2) λt2:T.pr0 x0 t2)
                       assume x0T
                       assume x1nat
                       suppose H1eq T t (lift h x1 x0)
                         by (pr0_refl .)
                         we proved pr0 x0 x0
                         by (ex_intro2 . . . . H1 previous)
                         we proved ex2 T λt2:T.eq T t (lift h x1 t2) λt2:T.pr0 x0 t2
x0:T.x1:nat.H1:(eq T t (lift h x1 x0)).(ex2 T λt2:T.eq T t (lift h x1 t2) λt2:T.pr0 x0 t2)
                case pr0_comp : u1:T u2:T :pr0 u1 u2 t2:T t3:T :pr0 t2 t3 k:K 
                   the thesis becomes 
                   x0:T
                     .x1:nat
                       .H5:(eq T (THead k u1 t2) (lift h x1 x0)).(ex2 T λt4:T.eq T (THead k u2 t3) (lift h x1 t4) λt4:T.pr0 x0 t4)
                   (H2) by induction hypothesis we know x0:T.x1:nat.(eq T u1 (lift h x1 x0))(ex2 T λt2:T.eq T u2 (lift h x1 t2) λt2:T.pr0 x0 t2)
                   (H4) by induction hypothesis we know x0:T.x1:nat.(eq T t2 (lift h x1 x0))(ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x0 t4)
                       assume x0T
                       assume x1nat
                       suppose H5eq T (THead k u1 t2) (lift h x1 x0)
                            assume bB
                            suppose H6eq T (THead (Bind b) u1 t2) (lift h x1 x0)
                               by (lift_gen_bind . . . . . . H6)
                               we proved 
                                  ex3_2
                                    T
                                    T
                                    λy:T.λz:T.eq T x0 (THead (Bind b) y z)
                                    λy:T.λ:T.eq T u1 (lift h x1 y)
                                    λ:T.λz:T.eq T t2 (lift h (S x1) z)
                               we proceed by induction on the previous result to prove ex2 T λt4:T.eq T (THead (Bind b) u2 t3) (lift h x1 t4) λt4:T.pr0 x0 t4
                                  case ex3_2_intro : x2:T x3:T H7:eq T x0 (THead (Bind b) x2 x3) H8:eq T u1 (lift h x1 x2) H9:eq T t2 (lift h (S x1) x3) 
                                     the thesis becomes ex2 T λt4:T.eq T (THead (Bind b) u2 t3) (lift h x1 t4) λt4:T.pr0 x0 t4
                                        by (H4 . . H9)
                                        we proved ex2 T λt4:T.eq T t3 (lift h (S x1) t4) λt4:T.pr0 x3 t4
                                        we proceed by induction on the previous result to prove 
                                           ex2 T λt4:T.eq T (THead (Bind b) u2 t3) (lift h x1 t4) λt4:T.pr0 (THead (Bind b) x2 x3) t4
                                           case ex_intro2 : x4:T H_x:eq T t3 (lift h (S x1) x4) H10:pr0 x3 x4 
                                              the thesis becomes 
                                              ex2 T λt4:T.eq T (THead (Bind b) u2 t3) (lift h x1 t4) λt4:T.pr0 (THead (Bind b) x2 x3) t4
                                                 by (H2 . . H8)
                                                 we proved ex2 T λt2:T.eq T u2 (lift h x1 t2) λt2:T.pr0 x2 t2
                                                 we proceed by induction on the previous result to prove 
                                                    ex2
                                                      T
                                                      λt4:T.eq T (THead (Bind b) u2 (lift h (S x1) x4)) (lift h x1 t4)
                                                      λt4:T.pr0 (THead (Bind b) x2 x3) t4
                                                    case ex_intro2 : x5:T H_x0:eq T u2 (lift h x1 x5) H11:pr0 x2 x5 
                                                       the thesis becomes 
                                                       ex2
                                                         T
                                                         λt4:T.eq T (THead (Bind b) u2 (lift h (S x1) x4)) (lift h x1 t4)
                                                         λt4:T.pr0 (THead (Bind b) x2 x3) t4
                                                          (h1
                                                             by (lift_bind . . . . .)
                                                             we proved 
                                                                eq
                                                                  T
                                                                  lift h x1 (THead (Bind b) x5 x4)
                                                                  THead (Bind b) (lift h x1 x5) (lift h (S x1) x4)
                                                             by (sym_eq . . . previous)

                                                                eq
                                                                  T
                                                                  THead (Bind b) (lift h x1 x5) (lift h (S x1) x4)
                                                                  lift h x1 (THead (Bind b) x5 x4)
                                                          end of h1
                                                          (h2
                                                             by (pr0_comp . . H11 . . H10 .)
pr0 (THead (Bind b) x2 x3) (THead (Bind b) x5 x4)
                                                          end of h2
                                                          by (ex_intro2 . . . . h1 h2)
                                                          we proved 
                                                             ex2
                                                               T
                                                               λt4:T.eq T (THead (Bind b) (lift h x1 x5) (lift h (S x1) x4)) (lift h x1 t4)
                                                               λt4:T.pr0 (THead (Bind b) x2 x3) t4
                                                          by (eq_ind_r . . . previous . H_x0)

                                                             ex2
                                                               T
                                                               λt4:T.eq T (THead (Bind b) u2 (lift h (S x1) x4)) (lift h x1 t4)
                                                               λt4:T.pr0 (THead (Bind b) x2 x3) t4
                                                 we proved 
                                                    ex2
                                                      T
                                                      λt4:T.eq T (THead (Bind b) u2 (lift h (S x1) x4)) (lift h x1 t4)
                                                      λt4:T.pr0 (THead (Bind b) x2 x3) t4
                                                 by (eq_ind_r . . . previous . H_x)

                                                    ex2 T λt4:T.eq T (THead (Bind b) u2 t3) (lift h x1 t4) λt4:T.pr0 (THead (Bind b) x2 x3) t4
                                        we proved 
                                           ex2 T λt4:T.eq T (THead (Bind b) u2 t3) (lift h x1 t4) λt4:T.pr0 (THead (Bind b) x2 x3) t4
                                        by (eq_ind_r . . . previous . H7)
ex2 T λt4:T.eq T (THead (Bind b) u2 t3) (lift h x1 t4) λt4:T.pr0 x0 t4
                               we proved ex2 T λt4:T.eq T (THead (Bind b) u2 t3) (lift h x1 t4) λt4:T.pr0 x0 t4

                               H6:eq T (THead (Bind b) u1 t2) (lift h x1 x0)
                                 .ex2 T λt4:T.eq T (THead (Bind b) u2 t3) (lift h x1 t4) λt4:T.pr0 x0 t4
                            assume fF
                            suppose H6eq T (THead (Flat f) u1 t2) (lift h x1 x0)
                               by (lift_gen_flat . . . . . . H6)
                               we proved 
                                  ex3_2
                                    T
                                    T
                                    λy:T.λz:T.eq T x0 (THead (Flat f) y z)
                                    λy:T.λ:T.eq T u1 (lift h x1 y)
                                    λ:T.λz:T.eq T t2 (lift h x1 z)
                               we proceed by induction on the previous result to prove ex2 T λt4:T.eq T (THead (Flat f) u2 t3) (lift h x1 t4) λt4:T.pr0 x0 t4
                                  case ex3_2_intro : x2:T x3:T H7:eq T x0 (THead (Flat f) x2 x3) H8:eq T u1 (lift h x1 x2) H9:eq T t2 (lift h x1 x3) 
                                     the thesis becomes ex2 T λt4:T.eq T (THead (Flat f) u2 t3) (lift h x1 t4) λt4:T.pr0 x0 t4
                                        by (H4 . . H9)
                                        we proved ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x3 t4
                                        we proceed by induction on the previous result to prove 
                                           ex2 T λt4:T.eq T (THead (Flat f) u2 t3) (lift h x1 t4) λt4:T.pr0 (THead (Flat f) x2 x3) t4
                                           case ex_intro2 : x4:T H_x:eq T t3 (lift h x1 x4) H10:pr0 x3 x4 
                                              the thesis becomes 
                                              ex2 T λt4:T.eq T (THead (Flat f) u2 t3) (lift h x1 t4) λt4:T.pr0 (THead (Flat f) x2 x3) t4
                                                 by (H2 . . H8)
                                                 we proved ex2 T λt2:T.eq T u2 (lift h x1 t2) λt2:T.pr0 x2 t2
                                                 we proceed by induction on the previous result to prove 
                                                    ex2
                                                      T
                                                      λt4:T.eq T (THead (Flat f) u2 (lift h x1 x4)) (lift h x1 t4)
                                                      λt4:T.pr0 (THead (Flat f) x2 x3) t4
                                                    case ex_intro2 : x5:T H_x0:eq T u2 (lift h x1 x5) H11:pr0 x2 x5 
                                                       the thesis becomes 
                                                       ex2
                                                         T
                                                         λt4:T.eq T (THead (Flat f) u2 (lift h x1 x4)) (lift h x1 t4)
                                                         λt4:T.pr0 (THead (Flat f) x2 x3) t4
                                                          (h1
                                                             by (lift_flat . . . . .)
                                                             we proved 
                                                                eq
                                                                  T
                                                                  lift h x1 (THead (Flat f) x5 x4)
                                                                  THead (Flat f) (lift h x1 x5) (lift h x1 x4)
                                                             by (sym_eq . . . previous)

                                                                eq
                                                                  T
                                                                  THead (Flat f) (lift h x1 x5) (lift h x1 x4)
                                                                  lift h x1 (THead (Flat f) x5 x4)
                                                          end of h1
                                                          (h2
                                                             by (pr0_comp . . H11 . . H10 .)
pr0 (THead (Flat f) x2 x3) (THead (Flat f) x5 x4)
                                                          end of h2
                                                          by (ex_intro2 . . . . h1 h2)
                                                          we proved 
                                                             ex2
                                                               T
                                                               λt4:T.eq T (THead (Flat f) (lift h x1 x5) (lift h x1 x4)) (lift h x1 t4)
                                                               λt4:T.pr0 (THead (Flat f) x2 x3) t4
                                                          by (eq_ind_r . . . previous . H_x0)

                                                             ex2
                                                               T
                                                               λt4:T.eq T (THead (Flat f) u2 (lift h x1 x4)) (lift h x1 t4)
                                                               λt4:T.pr0 (THead (Flat f) x2 x3) t4
                                                 we proved 
                                                    ex2
                                                      T
                                                      λt4:T.eq T (THead (Flat f) u2 (lift h x1 x4)) (lift h x1 t4)
                                                      λt4:T.pr0 (THead (Flat f) x2 x3) t4
                                                 by (eq_ind_r . . . previous . H_x)

                                                    ex2 T λt4:T.eq T (THead (Flat f) u2 t3) (lift h x1 t4) λt4:T.pr0 (THead (Flat f) x2 x3) t4
                                        we proved 
                                           ex2 T λt4:T.eq T (THead (Flat f) u2 t3) (lift h x1 t4) λt4:T.pr0 (THead (Flat f) x2 x3) t4
                                        by (eq_ind_r . . . previous . H7)
ex2 T λt4:T.eq T (THead (Flat f) u2 t3) (lift h x1 t4) λt4:T.pr0 x0 t4
                               we proved ex2 T λt4:T.eq T (THead (Flat f) u2 t3) (lift h x1 t4) λt4:T.pr0 x0 t4

                               H6:eq T (THead (Flat f) u1 t2) (lift h x1 x0)
                                 .ex2 T λt4:T.eq T (THead (Flat f) u2 t3) (lift h x1 t4) λt4:T.pr0 x0 t4
                         by (previous . H5)
                         we proved ex2 T λt4:T.eq T (THead k u2 t3) (lift h x1 t4) λt4:T.pr0 x0 t4

                         x0:T
                           .x1:nat
                             .H5:(eq T (THead k u1 t2) (lift h x1 x0)).(ex2 T λt4:T.eq T (THead k u2 t3) (lift h x1 t4) λt4:T.pr0 x0 t4)
                case pr0_beta : u:T v1:T v2:T :pr0 v1 v2 t2:T t3:T :pr0 t2 t3 
                   the thesis becomes 
                   x0:T
                     .x1:nat
                       .H5:eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t2)) (lift h x1 x0)
                         .ex2 T λt4:T.eq T (THead (Bind Abbr) v2 t3) (lift h x1 t4) λt4:T.pr0 x0 t4
                   (H2) by induction hypothesis we know x0:T.x1:nat.(eq T v1 (lift h x1 x0))(ex2 T λt2:T.eq T v2 (lift h x1 t2) λt2:T.pr0 x0 t2)
                   (H4) by induction hypothesis we know x0:T.x1:nat.(eq T t2 (lift h x1 x0))(ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x0 t4)
                       assume x0T
                       assume x1nat
                       suppose H5eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t2)) (lift h x1 x0)
                         by (lift_gen_flat . . . . . . H5)
                         we proved 
                            ex3_2
                              T
                              T
                              λy:T.λz:T.eq T x0 (THead (Flat Appl) y z)
                              λy:T.λ:T.eq T v1 (lift h x1 y)
                              λ:T.λz:T.eq T (THead (Bind Abst) u t2) (lift h x1 z)
                         we proceed by induction on the previous result to prove ex2 T λt4:T.eq T (THead (Bind Abbr) v2 t3) (lift h x1 t4) λt4:T.pr0 x0 t4
                            case ex3_2_intro : x2:T x3:T H6:eq T x0 (THead (Flat Appl) x2 x3) H7:eq T v1 (lift h x1 x2) H8:eq T (THead (Bind Abst) u t2) (lift h x1 x3) 
                               the thesis becomes ex2 T λt4:T.eq T (THead (Bind Abbr) v2 t3) (lift h x1 t4) λt4:T.pr0 x0 t4
                                  by (lift_gen_bind . . . . . . H8)
                                  we proved 
                                     ex3_2
                                       T
                                       T
                                       λy:T.λz:T.eq T x3 (THead (Bind Abst) y z)
                                       λy:T.λ:T.eq T u (lift h x1 y)
                                       λ:T.λz:T.eq T t2 (lift h (S x1) z)
                                  we proceed by induction on the previous result to prove 
                                     ex2
                                       T
                                       λt4:T.eq T (THead (Bind Abbr) v2 t3) (lift h x1 t4)
                                       λt4:T.pr0 (THead (Flat Appl) x2 x3) t4
                                     case ex3_2_intro : x4:T x5:T H9:eq T x3 (THead (Bind Abst) x4 x5) :eq T u (lift h x1 x4) H11:eq T t2 (lift h (S x1) x5) 
                                        the thesis becomes 
                                        ex2
                                          T
                                          λt4:T.eq T (THead (Bind Abbr) v2 t3) (lift h x1 t4)
                                          λt4:T.pr0 (THead (Flat Appl) x2 x3) t4
                                           by (H4 . . H11)
                                           we proved ex2 T λt4:T.eq T t3 (lift h (S x1) t4) λt4:T.pr0 x5 t4
                                           we proceed by induction on the previous result to prove 
                                              ex2
                                                T
                                                λt4:T.eq T (THead (Bind Abbr) v2 t3) (lift h x1 t4)
                                                λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind Abst) x4 x5)) t4
                                              case ex_intro2 : x6:T H_x:eq T t3 (lift h (S x1) x6) H12:pr0 x5 x6 
                                                 the thesis becomes 
                                                 ex2
                                                   T
                                                   λt4:T.eq T (THead (Bind Abbr) v2 t3) (lift h x1 t4)
                                                   λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind Abst) x4 x5)) t4
                                                    by (H2 . . H7)
                                                    we proved ex2 T λt2:T.eq T v2 (lift h x1 t2) λt2:T.pr0 x2 t2
                                                    we proceed by induction on the previous result to prove 
                                                       ex2
                                                         T
                                                         λt4:T.eq T (THead (Bind Abbr) v2 (lift h (S x1) x6)) (lift h x1 t4)
                                                         λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind Abst) x4 x5)) t4
                                                       case ex_intro2 : x7:T H_x0:eq T v2 (lift h x1 x7) H13:pr0 x2 x7 
                                                          the thesis becomes 
                                                          ex2
                                                            T
                                                            λt4:T.eq T (THead (Bind Abbr) v2 (lift h (S x1) x6)) (lift h x1 t4)
                                                            λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind Abst) x4 x5)) t4
                                                             (h1
                                                                by (lift_bind . . . . .)
                                                                we proved 
                                                                   eq
                                                                     T
                                                                     lift h x1 (THead (Bind Abbr) x7 x6)
                                                                     THead (Bind Abbr) (lift h x1 x7) (lift h (S x1) x6)
                                                                by (sym_eq . . . previous)

                                                                   eq
                                                                     T
                                                                     THead (Bind Abbr) (lift h x1 x7) (lift h (S x1) x6)
                                                                     lift h x1 (THead (Bind Abbr) x7 x6)
                                                             end of h1
                                                             (h2
                                                                by (pr0_beta . . . H13 . . H12)

                                                                   pr0
                                                                     THead (Flat Appl) x2 (THead (Bind Abst) x4 x5)
                                                                     THead (Bind Abbr) x7 x6
                                                             end of h2
                                                             by (ex_intro2 . . . . h1 h2)
                                                             we proved 
                                                                ex2
                                                                  T
                                                                  λt4:T.eq T (THead (Bind Abbr) (lift h x1 x7) (lift h (S x1) x6)) (lift h x1 t4)
                                                                  λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind Abst) x4 x5)) t4
                                                             by (eq_ind_r . . . previous . H_x0)

                                                                ex2
                                                                  T
                                                                  λt4:T.eq T (THead (Bind Abbr) v2 (lift h (S x1) x6)) (lift h x1 t4)
                                                                  λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind Abst) x4 x5)) t4
                                                    we proved 
                                                       ex2
                                                         T
                                                         λt4:T.eq T (THead (Bind Abbr) v2 (lift h (S x1) x6)) (lift h x1 t4)
                                                         λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind Abst) x4 x5)) t4
                                                    by (eq_ind_r . . . previous . H_x)

                                                       ex2
                                                         T
                                                         λt4:T.eq T (THead (Bind Abbr) v2 t3) (lift h x1 t4)
                                                         λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind Abst) x4 x5)) t4
                                           we proved 
                                              ex2
                                                T
                                                λt4:T.eq T (THead (Bind Abbr) v2 t3) (lift h x1 t4)
                                                λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind Abst) x4 x5)) t4
                                           by (eq_ind_r . . . previous . H9)

                                              ex2
                                                T
                                                λt4:T.eq T (THead (Bind Abbr) v2 t3) (lift h x1 t4)
                                                λt4:T.pr0 (THead (Flat Appl) x2 x3) t4
                                  we proved 
                                     ex2
                                       T
                                       λt4:T.eq T (THead (Bind Abbr) v2 t3) (lift h x1 t4)
                                       λt4:T.pr0 (THead (Flat Appl) x2 x3) t4
                                  by (eq_ind_r . . . previous . H6)
ex2 T λt4:T.eq T (THead (Bind Abbr) v2 t3) (lift h x1 t4) λt4:T.pr0 x0 t4
                         we proved ex2 T λt4:T.eq T (THead (Bind Abbr) v2 t3) (lift h x1 t4) λt4:T.pr0 x0 t4

                         x0:T
                           .x1:nat
                             .H5:eq T (THead (Flat Appl) v1 (THead (Bind Abst) u t2)) (lift h x1 x0)
                               .ex2 T λt4:T.eq T (THead (Bind Abbr) v2 t3) (lift h x1 t4) λt4:T.pr0 x0 t4
                case pr0_upsilon : b:B H1:not (eq B b Abst) v1:T v2:T :pr0 v1 v2 u1:T u2:T :pr0 u1 u2 t2:T t3:T :pr0 t2 t3 
                   the thesis becomes 
                   x0:T
                     .x1:nat
                       .H8:eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t2)) (lift h x1 x0)
                         .ex2
                           T
                           λt4:T
                             .eq
                               T
                               THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t3)
                               lift h x1 t4
                           λt4:T.pr0 x0 t4
                   (H3) by induction hypothesis we know x0:T.x1:nat.(eq T v1 (lift h x1 x0))(ex2 T λt2:T.eq T v2 (lift h x1 t2) λt2:T.pr0 x0 t2)
                   (H5) by induction hypothesis we know x0:T.x1:nat.(eq T u1 (lift h x1 x0))(ex2 T λt2:T.eq T u2 (lift h x1 t2) λt2:T.pr0 x0 t2)
                   (H7) by induction hypothesis we know x0:T.x1:nat.(eq T t2 (lift h x1 x0))(ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x0 t4)
                       assume x0T
                       assume x1nat
                       suppose H8eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t2)) (lift h x1 x0)
                         by (lift_gen_flat . . . . . . H8)
                         we proved 
                            ex3_2
                              T
                              T
                              λy:T.λz:T.eq T x0 (THead (Flat Appl) y z)
                              λy:T.λ:T.eq T v1 (lift h x1 y)
                              λ:T.λz:T.eq T (THead (Bind b) u1 t2) (lift h x1 z)
                         we proceed by induction on the previous result to prove 
                            ex2
                              T
                              λt4:T
                                .eq
                                  T
                                  THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t3)
                                  lift h x1 t4
                              λt4:T.pr0 x0 t4
                            case ex3_2_intro : x2:T x3:T H9:eq T x0 (THead (Flat Appl) x2 x3) H10:eq T v1 (lift h x1 x2) H11:eq T (THead (Bind b) u1 t2) (lift h x1 x3) 
                               the thesis becomes 
                               ex2
                                 T
                                 λt4:T
                                   .eq
                                     T
                                     THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t3)
                                     lift h x1 t4
                                 λt4:T.pr0 x0 t4
                                  by (lift_gen_bind . . . . . . H11)
                                  we proved 
                                     ex3_2
                                       T
                                       T
                                       λy:T.λz:T.eq T x3 (THead (Bind b) y z)
                                       λy:T.λ:T.eq T u1 (lift h x1 y)
                                       λ:T.λz:T.eq T t2 (lift h (S x1) z)
                                  we proceed by induction on the previous result to prove 
                                     ex2
                                       T
                                       λt4:T
                                         .eq
                                           T
                                           THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t3)
                                           lift h x1 t4
                                       λt4:T.pr0 (THead (Flat Appl) x2 x3) t4
                                     case ex3_2_intro : x4:T x5:T H12:eq T x3 (THead (Bind b) x4 x5) H13:eq T u1 (lift h x1 x4) H14:eq T t2 (lift h (S x1) x5) 
                                        the thesis becomes 
                                        ex2
                                          T
                                          λt4:T
                                            .eq
                                              T
                                              THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t3)
                                              lift h x1 t4
                                          λt4:T.pr0 (THead (Flat Appl) x2 x3) t4
                                           by (H7 . . H14)
                                           we proved ex2 T λt4:T.eq T t3 (lift h (S x1) t4) λt4:T.pr0 x5 t4
                                           we proceed by induction on the previous result to prove 
                                              ex2
                                                T
                                                λt4:T
                                                  .eq
                                                    T
                                                    THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t3)
                                                    lift h x1 t4
                                                λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4
                                              case ex_intro2 : x6:T H_x:eq T t3 (lift h (S x1) x6) H15:pr0 x5 x6 
                                                 the thesis becomes 
                                                 ex2
                                                   T
                                                   λt4:T
                                                     .eq
                                                       T
                                                       THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t3)
                                                       lift h x1 t4
                                                   λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4
                                                    by (H5 . . H13)
                                                    we proved ex2 T λt2:T.eq T u2 (lift h x1 t2) λt2:T.pr0 x4 t2
                                                    we proceed by induction on the previous result to prove 
                                                       ex2
                                                         T
                                                         λt4:T
                                                           .eq
                                                             T
                                                             THead
                                                               Bind b
                                                               u2
                                                               THead (Flat Appl) (lift (S OO v2) (lift h (S x1) x6)
                                                             lift h x1 t4
                                                         λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4
                                                       case ex_intro2 : x7:T H_x0:eq T u2 (lift h x1 x7) H16:pr0 x4 x7 
                                                          the thesis becomes 
                                                          ex2
                                                            T
                                                            λt4:T
                                                              .eq
                                                                T
                                                                THead
                                                                  Bind b
                                                                  u2
                                                                  THead (Flat Appl) (lift (S OO v2) (lift h (S x1) x6)
                                                                lift h x1 t4
                                                            λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4
                                                             by (H3 . . H10)
                                                             we proved ex2 T λt2:T.eq T v2 (lift h x1 t2) λt2:T.pr0 x2 t2
                                                             we proceed by induction on the previous result to prove 
                                                                ex2
                                                                  T
                                                                  λt4:T
                                                                    .eq
                                                                      T
                                                                      THead
                                                                        Bind b
                                                                        lift h x1 x7
                                                                        THead (Flat Appl) (lift (S OO v2) (lift h (S x1) x6)
                                                                      lift h x1 t4
                                                                  λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4
                                                                case ex_intro2 : x8:T H_x1:eq T v2 (lift h x1 x8) H17:pr0 x2 x8 
                                                                   the thesis becomes 
                                                                   ex2
                                                                     T
                                                                     λt4:T
                                                                       .eq
                                                                         T
                                                                         THead
                                                                           Bind b
                                                                           lift h x1 x7
                                                                           THead (Flat Appl) (lift (S OO v2) (lift h (S x1) x6)
                                                                         lift h x1 t4
                                                                     λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4
                                                                      by (le_O_n .)
                                                                      we proved le O x1
                                                                      by (lift_d . . . . . previous)
                                                                      we proved 
                                                                         eq
                                                                           T
                                                                           lift h (plus (S O) x1) (lift (S OO x8)
                                                                           lift (S OO (lift h x1 x8)
                                                                      we proceed by induction on the previous result to prove 
                                                                         ex2
                                                                           T
                                                                           λt4:T
                                                                             .eq
                                                                               T
                                                                               THead
                                                                                 Bind b
                                                                                 lift h x1 x7
                                                                                 THead (Flat Appl) (lift (S OO (lift h x1 x8)) (lift h (S x1) x6)
                                                                               lift h x1 t4
                                                                           λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4
                                                                         case refl_equal : 
                                                                            the thesis becomes 
                                                                            ex2
                                                                              T
                                                                              λt4:T
                                                                                .eq
                                                                                  T
                                                                                  THead
                                                                                    Bind b
                                                                                    lift h x1 x7
                                                                                    THead
                                                                                      Flat Appl
                                                                                      lift h (plus (S O) x1) (lift (S OO x8)
                                                                                      lift h (S x1) x6
                                                                                  lift h x1 t4
                                                                              λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4
                                                                               by (lift_flat . . . . .)
                                                                               we proved 
                                                                                  eq
                                                                                    T
                                                                                    lift h (S x1) (THead (Flat Appl) (lift (S OO x8) x6)
                                                                                    THead
                                                                                      Flat Appl
                                                                                      lift h (S x1) (lift (S OO x8)
                                                                                      lift h (S x1) x6
                                                                               we proceed by induction on the previous result to prove 
                                                                                  ex2
                                                                                    T
                                                                                    λt4:T
                                                                                      .eq
                                                                                        T
                                                                                        THead
                                                                                          Bind b
                                                                                          lift h x1 x7
                                                                                          THead
                                                                                            Flat Appl
                                                                                            lift h (S x1) (lift (S OO x8)
                                                                                            lift h (S x1) x6
                                                                                        lift h x1 t4
                                                                                    λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4
                                                                                  case refl_equal : 
                                                                                     the thesis becomes 
                                                                                     ex2
                                                                                       T
                                                                                       λt4:T
                                                                                         .eq
                                                                                           T
                                                                                           THead
                                                                                             Bind b
                                                                                             lift h x1 x7
                                                                                             lift h (S x1) (THead (Flat Appl) (lift (S OO x8) x6)
                                                                                           lift h x1 t4
                                                                                       λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4
                                                                                        (h1
                                                                                           by (lift_bind . . . . .)
                                                                                           we proved 
                                                                                              eq
                                                                                                T
                                                                                                lift
                                                                                                  h
                                                                                                  x1
                                                                                                  THead (Bind b) x7 (THead (Flat Appl) (lift (S OO x8) x6)
                                                                                                THead
                                                                                                  Bind b
                                                                                                  lift h x1 x7
                                                                                                  lift h (S x1) (THead (Flat Appl) (lift (S OO x8) x6)
                                                                                           by (sym_eq . . . previous)

                                                                                              eq
                                                                                                T
                                                                                                THead
                                                                                                  Bind b
                                                                                                  lift h x1 x7
                                                                                                  lift h (S x1) (THead (Flat Appl) (lift (S OO x8) x6)
                                                                                                lift
                                                                                                  h
                                                                                                  x1
                                                                                                  THead (Bind b) x7 (THead (Flat Appl) (lift (S OO x8) x6)
                                                                                        end of h1
                                                                                        (h2
                                                                                           by (pr0_upsilon . H1 . . H17 . . H16 . . H15)

                                                                                              pr0
                                                                                                THead (Flat Appl) x2 (THead (Bind b) x4 x5)
                                                                                                THead (Bind b) x7 (THead (Flat Appl) (lift (S OO x8) x6)
                                                                                        end of h2
                                                                                        by (ex_intro2 . . . . h1 h2)

                                                                                           ex2
                                                                                             T
                                                                                             λt4:T
                                                                                               .eq
                                                                                                 T
                                                                                                 THead
                                                                                                   Bind b
                                                                                                   lift h x1 x7
                                                                                                   lift h (S x1) (THead (Flat Appl) (lift (S OO x8) x6)
                                                                                                 lift h x1 t4
                                                                                             λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4
                                                                               we proved 
                                                                                  ex2
                                                                                    T
                                                                                    λt4:T
                                                                                      .eq
                                                                                        T
                                                                                        THead
                                                                                          Bind b
                                                                                          lift h x1 x7
                                                                                          THead
                                                                                            Flat Appl
                                                                                            lift h (S x1) (lift (S OO x8)
                                                                                            lift h (S x1) x6
                                                                                        lift h x1 t4
                                                                                    λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4

                                                                                  ex2
                                                                                    T
                                                                                    λt4:T
                                                                                      .eq
                                                                                        T
                                                                                        THead
                                                                                          Bind b
                                                                                          lift h x1 x7
                                                                                          THead
                                                                                            Flat Appl
                                                                                            lift h (plus (S O) x1) (lift (S OO x8)
                                                                                            lift h (S x1) x6
                                                                                        lift h x1 t4
                                                                                    λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4
                                                                      we proved 
                                                                         ex2
                                                                           T
                                                                           λt4:T
                                                                             .eq
                                                                               T
                                                                               THead
                                                                                 Bind b
                                                                                 lift h x1 x7
                                                                                 THead (Flat Appl) (lift (S OO (lift h x1 x8)) (lift h (S x1) x6)
                                                                               lift h x1 t4
                                                                           λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4
                                                                      by (eq_ind_r . . . previous . H_x1)

                                                                         ex2
                                                                           T
                                                                           λt4:T
                                                                             .eq
                                                                               T
                                                                               THead
                                                                                 Bind b
                                                                                 lift h x1 x7
                                                                                 THead (Flat Appl) (lift (S OO v2) (lift h (S x1) x6)
                                                                               lift h x1 t4
                                                                           λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4
                                                             we proved 
                                                                ex2
                                                                  T
                                                                  λt4:T
                                                                    .eq
                                                                      T
                                                                      THead
                                                                        Bind b
                                                                        lift h x1 x7
                                                                        THead (Flat Appl) (lift (S OO v2) (lift h (S x1) x6)
                                                                      lift h x1 t4
                                                                  λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4
                                                             by (eq_ind_r . . . previous . H_x0)

                                                                ex2
                                                                  T
                                                                  λt4:T
                                                                    .eq
                                                                      T
                                                                      THead
                                                                        Bind b
                                                                        u2
                                                                        THead (Flat Appl) (lift (S OO v2) (lift h (S x1) x6)
                                                                      lift h x1 t4
                                                                  λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4
                                                    we proved 
                                                       ex2
                                                         T
                                                         λt4:T
                                                           .eq
                                                             T
                                                             THead
                                                               Bind b
                                                               u2
                                                               THead (Flat Appl) (lift (S OO v2) (lift h (S x1) x6)
                                                             lift h x1 t4
                                                         λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4
                                                    by (eq_ind_r . . . previous . H_x)

                                                       ex2
                                                         T
                                                         λt4:T
                                                           .eq
                                                             T
                                                             THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t3)
                                                             lift h x1 t4
                                                         λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4
                                           we proved 
                                              ex2
                                                T
                                                λt4:T
                                                  .eq
                                                    T
                                                    THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t3)
                                                    lift h x1 t4
                                                λt4:T.pr0 (THead (Flat Appl) x2 (THead (Bind b) x4 x5)) t4
                                           by (eq_ind_r . . . previous . H12)

                                              ex2
                                                T
                                                λt4:T
                                                  .eq
                                                    T
                                                    THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t3)
                                                    lift h x1 t4
                                                λt4:T.pr0 (THead (Flat Appl) x2 x3) t4
                                  we proved 
                                     ex2
                                       T
                                       λt4:T
                                         .eq
                                           T
                                           THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t3)
                                           lift h x1 t4
                                       λt4:T.pr0 (THead (Flat Appl) x2 x3) t4
                                  by (eq_ind_r . . . previous . H9)

                                     ex2
                                       T
                                       λt4:T
                                         .eq
                                           T
                                           THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t3)
                                           lift h x1 t4
                                       λt4:T.pr0 x0 t4
                         we proved 
                            ex2
                              T
                              λt4:T
                                .eq
                                  T
                                  THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t3)
                                  lift h x1 t4
                              λt4:T.pr0 x0 t4

                         x0:T
                           .x1:nat
                             .H8:eq T (THead (Flat Appl) v1 (THead (Bind b) u1 t2)) (lift h x1 x0)
                               .ex2
                                 T
                                 λt4:T
                                   .eq
                                     T
                                     THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t3)
                                     lift h x1 t4
                                 λt4:T.pr0 x0 t4
                case pr0_delta : u1:T u2:T :pr0 u1 u2 t2:T t3:T :pr0 t2 t3 w:T H5:subst0 O u2 t3 w 
                   the thesis becomes 
                   x0:T
                     .x1:nat
                       .H6:eq T (THead (Bind Abbr) u1 t2) (lift h x1 x0)
                         .ex2 T λt4:T.eq T (THead (Bind Abbr) u2 w) (lift h x1 t4) λt4:T.pr0 x0 t4
                   (H2) by induction hypothesis we know x0:T.x1:nat.(eq T u1 (lift h x1 x0))(ex2 T λt2:T.eq T u2 (lift h x1 t2) λt2:T.pr0 x0 t2)
                   (H4) by induction hypothesis we know x0:T.x1:nat.(eq T t2 (lift h x1 x0))(ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x0 t4)
                       assume x0T
                       assume x1nat
                       suppose H6eq T (THead (Bind Abbr) u1 t2) (lift h x1 x0)
                         by (lift_gen_bind . . . . . . H6)
                         we proved 
                            ex3_2
                              T
                              T
                              λy:T.λz:T.eq T x0 (THead (Bind Abbr) y z)
                              λy:T.λ:T.eq T u1 (lift h x1 y)
                              λ:T.λz:T.eq T t2 (lift h (S x1) z)
                         we proceed by induction on the previous result to prove ex2 T λt4:T.eq T (THead (Bind Abbr) u2 w) (lift h x1 t4) λt4:T.pr0 x0 t4
                            case ex3_2_intro : x2:T x3:T H7:eq T x0 (THead (Bind Abbr) x2 x3) H8:eq T u1 (lift h x1 x2) H9:eq T t2 (lift h (S x1) x3) 
                               the thesis becomes ex2 T λt4:T.eq T (THead (Bind Abbr) u2 w) (lift h x1 t4) λt4:T.pr0 x0 t4
                                  by (H4 . . H9)
                                  we proved ex2 T λt4:T.eq T t3 (lift h (S x1) t4) λt4:T.pr0 x3 t4
                                  we proceed by induction on the previous result to prove 
                                     ex2
                                       T
                                       λt4:T.eq T (THead (Bind Abbr) u2 w) (lift h x1 t4)
                                       λt4:T.pr0 (THead (Bind Abbr) x2 x3) t4
                                     case ex_intro2 : x4:T H_x:eq T t3 (lift h (S x1) x4) H10:pr0 x3 x4 
                                        the thesis becomes 
                                        ex2
                                          T
                                          λt4:T.eq T (THead (Bind Abbr) u2 w) (lift h x1 t4)
                                          λt4:T.pr0 (THead (Bind Abbr) x2 x3) t4
                                           (H11
                                              we proceed by induction on H_x to prove subst0 O u2 (lift h (S x1) x4) w
                                                 case refl_equal : 
                                                    the thesis becomes the hypothesis H5
subst0 O u2 (lift h (S x1) x4) w
                                           end of H11
                                           by (H2 . . H8)
                                           we proved ex2 T λt2:T.eq T u2 (lift h x1 t2) λt2:T.pr0 x2 t2
                                           we proceed by induction on the previous result to prove 
                                              ex2
                                                T
                                                λt4:T.eq T (THead (Bind Abbr) u2 w) (lift h x1 t4)
                                                λt4:T.pr0 (THead (Bind Abbr) x2 x3) t4
                                              case ex_intro2 : x5:T H_x0:eq T u2 (lift h x1 x5) H12:pr0 x2 x5 
                                                 the thesis becomes 
                                                 ex2
                                                   T
                                                   λt4:T.eq T (THead (Bind Abbr) u2 w) (lift h x1 t4)
                                                   λt4:T.pr0 (THead (Bind Abbr) x2 x3) t4
                                                    (H13
                                                       we proceed by induction on H_x0 to prove subst0 O (lift h x1 x5) (lift h (S x1) x4) w
                                                          case refl_equal : 
                                                             the thesis becomes the hypothesis H11
subst0 O (lift h x1 x5) (lift h (S x1) x4) w
                                                    end of H13
                                                    (H14
                                                       by (refl_equal . .)
eq nat (S (plus O x1)) (S (plus O x1))
                                                    end of H14
                                                    (H15
                                                       consider H14
                                                       we proved eq nat (S (plus O x1)) (S (plus O x1))
                                                       that is equivalent to eq nat (S x1) (S (plus O x1))
                                                       we proceed by induction on the previous result to prove subst0 O (lift h x1 x5) (lift h (S (plus O x1)) x4) w
                                                          case refl_equal : 
                                                             the thesis becomes the hypothesis H13
subst0 O (lift h x1 x5) (lift h (S (plus O x1)) x4) w
                                                    end of H15
                                                    by (subst0_gen_lift_lt . . . . . . H15)
                                                    we proved ex2 T λt2:T.eq T w (lift h (S (plus O x1)) t2) λt2:T.subst0 O x5 x4 t2
                                                    we proceed by induction on the previous result to prove 
                                                       ex2
                                                         T
                                                         λt4:T.eq T (THead (Bind Abbr) (lift h x1 x5) w) (lift h x1 t4)
                                                         λt4:T.pr0 (THead (Bind Abbr) x2 x3) t4
                                                       case ex_intro2 : x6:T H16:eq T w (lift h (S (plus O x1)) x6) H17:subst0 O x5 x4 x6 
                                                          the thesis becomes 
                                                          ex2
                                                            T
                                                            λt4:T.eq T (THead (Bind Abbr) (lift h x1 x5) w) (lift h x1 t4)
                                                            λt4:T.pr0 (THead (Bind Abbr) x2 x3) t4
                                                             (h1
                                                                by (lift_bind . . . . .)
                                                                we proved 
                                                                   eq
                                                                     T
                                                                     lift h (plus O x1) (THead (Bind Abbr) x5 x6)
                                                                     THead (Bind Abbr) (lift h (plus O x1) x5) (lift h (S (plus O x1)) x6)
                                                                that is equivalent to 
                                                                   eq
                                                                     T
                                                                     lift h x1 (THead (Bind Abbr) x5 x6)
                                                                     THead (Bind Abbr) (lift h x1 x5) (lift h (S (plus O x1)) x6)
                                                                by (sym_eq . . . previous)

                                                                   eq
                                                                     T
                                                                     THead (Bind Abbr) (lift h x1 x5) (lift h (S (plus O x1)) x6)
                                                                     lift h x1 (THead (Bind Abbr) x5 x6)
                                                             end of h1
                                                             (h2
                                                                by (pr0_delta . . H12 . . H10 . H17)
pr0 (THead (Bind Abbr) x2 x3) (THead (Bind Abbr) x5 x6)
                                                             end of h2
                                                             by (ex_intro2 . . . . h1 h2)
                                                             we proved 
                                                                ex2
                                                                  T
                                                                  λt4:T
                                                                    .eq
                                                                      T
                                                                      THead (Bind Abbr) (lift h x1 x5) (lift h (S (plus O x1)) x6)
                                                                      lift h x1 t4
                                                                  λt4:T.pr0 (THead (Bind Abbr) x2 x3) t4
                                                             by (eq_ind_r . . . previous . H16)

                                                                ex2
                                                                  T
                                                                  λt4:T.eq T (THead (Bind Abbr) (lift h x1 x5) w) (lift h x1 t4)
                                                                  λt4:T.pr0 (THead (Bind Abbr) x2 x3) t4
                                                    we proved 
                                                       ex2
                                                         T
                                                         λt4:T.eq T (THead (Bind Abbr) (lift h x1 x5) w) (lift h x1 t4)
                                                         λt4:T.pr0 (THead (Bind Abbr) x2 x3) t4
                                                    by (eq_ind_r . . . previous . H_x0)

                                                       ex2
                                                         T
                                                         λt4:T.eq T (THead (Bind Abbr) u2 w) (lift h x1 t4)
                                                         λt4:T.pr0 (THead (Bind Abbr) x2 x3) t4

                                              ex2
                                                T
                                                λt4:T.eq T (THead (Bind Abbr) u2 w) (lift h x1 t4)
                                                λt4:T.pr0 (THead (Bind Abbr) x2 x3) t4
                                  we proved 
                                     ex2
                                       T
                                       λt4:T.eq T (THead (Bind Abbr) u2 w) (lift h x1 t4)
                                       λt4:T.pr0 (THead (Bind Abbr) x2 x3) t4
                                  by (eq_ind_r . . . previous . H7)
ex2 T λt4:T.eq T (THead (Bind Abbr) u2 w) (lift h x1 t4) λt4:T.pr0 x0 t4
                         we proved ex2 T λt4:T.eq T (THead (Bind Abbr) u2 w) (lift h x1 t4) λt4:T.pr0 x0 t4

                         x0:T
                           .x1:nat
                             .H6:eq T (THead (Bind Abbr) u1 t2) (lift h x1 x0)
                               .ex2 T λt4:T.eq T (THead (Bind Abbr) u2 w) (lift h x1 t4) λt4:T.pr0 x0 t4
                case pr0_zeta : b:B H1:not (eq B b Abst) t2:T t3:T :pr0 t2 t3 u:T 
                   the thesis becomes 
                   x0:T
                     .x1:nat
                       .H4:eq T (THead (Bind b) u (lift (S OO t2)) (lift h x1 x0)
                         .ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x0 t4
                   (H3) by induction hypothesis we know x0:T.x1:nat.(eq T t2 (lift h x1 x0))(ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x0 t4)
                       assume x0T
                       assume x1nat
                       suppose H4eq T (THead (Bind b) u (lift (S OO t2)) (lift h x1 x0)
                         by (lift_gen_bind . . . . . . H4)
                         we proved 
                            ex3_2
                              T
                              T
                              λy:T.λz:T.eq T x0 (THead (Bind b) y z)
                              λy:T.λ:T.eq T u (lift h x1 y)
                              λ:T.λz:T.eq T (lift (S OO t2) (lift h (S x1) z)
                         we proceed by induction on the previous result to prove ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x0 t4
                            case ex3_2_intro : x2:T x3:T H5:eq T x0 (THead (Bind b) x2 x3) :eq T u (lift h x1 x2) H7:eq T (lift (S OO t2) (lift h (S x1) x3) 
                               the thesis becomes ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x0 t4
                                  (H8
                                     (h1
                                        by (refl_equal . .)
                                        we proved eq nat (plus (S O) x1) (plus (S O) x1)
eq nat (S x1) (plus (S O) x1)
                                     end of h1
                                     (h2
                                        by (plus_sym . .)
eq nat (plus x1 (S O)) (plus (S O) x1)
                                     end of h2
                                     by (eq_ind_r . . . h1 . h2)
eq nat (S x1) (plus x1 (S O))
                                  end of H8
                                  (H9
                                     we proceed by induction on H8 to prove eq T (lift (S OO t2) (lift h (plus x1 (S O)) x3)
                                        case refl_equal : 
                                           the thesis becomes the hypothesis H7
eq T (lift (S OO t2) (lift h (plus x1 (S O)) x3)
                                  end of H9
                                  by (le_O_n .)
                                  we proved le O x1
                                  by (lift_gen_lift . . . . . . previous H9)
                                  we proved ex2 T λt2:T.eq T x3 (lift (S OO t2) λt2:T.eq T t2 (lift h x1 t2)
                                  we proceed by induction on the previous result to prove ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 (THead (Bind b) x2 x3) t4
                                     case ex_intro2 : x4:T H10:eq T x3 (lift (S OO x4) H11:eq T t2 (lift h x1 x4) 
                                        the thesis becomes ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 (THead (Bind b) x2 x3) t4
                                           by (H3 . . H11)
                                           we proved ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x4 t4
                                           we proceed by induction on the previous result to prove ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 (THead (Bind b) x2 (lift (S OO x4)) t4
                                              case ex_intro2 : x5:T H_x:eq T t3 (lift h x1 x5) H12:pr0 x4 x5 
                                                 the thesis becomes ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 (THead (Bind b) x2 (lift (S OO x4)) t4
                                                    (h1
                                                       by (refl_equal . .)
eq T (lift h x1 x5) (lift h x1 x5)
                                                    end of h1
                                                    (h2
                                                       by (pr0_zeta . H1 . . H12 .)
pr0 (THead (Bind b) x2 (lift (S OO x4)) x5
                                                    end of h2
                                                    by (ex_intro2 . . . . h1 h2)
                                                    we proved 
                                                       ex2
                                                         T
                                                         λt4:T.eq T (lift h x1 x5) (lift h x1 t4)
                                                         λt4:T.pr0 (THead (Bind b) x2 (lift (S OO x4)) t4
                                                    by (eq_ind_r . . . previous . H_x)
ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 (THead (Bind b) x2 (lift (S OO x4)) t4
                                           we proved ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 (THead (Bind b) x2 (lift (S OO x4)) t4
                                           by (eq_ind_r . . . previous . H10)
ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 (THead (Bind b) x2 x3) t4
                                  we proved ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 (THead (Bind b) x2 x3) t4
                                  by (eq_ind_r . . . previous . H5)
ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x0 t4
                         we proved ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x0 t4

                         x0:T
                           .x1:nat
                             .H4:eq T (THead (Bind b) u (lift (S OO t2)) (lift h x1 x0)
                               .ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x0 t4
                case pr0_tau : t2:T t3:T :pr0 t2 t3 u:T 
                   the thesis becomes 
                   x0:T
                     .x1:nat
                       .H3:eq T (THead (Flat Cast) u t2) (lift h x1 x0)
                         .ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x0 t4
                   (H2) by induction hypothesis we know x0:T.x1:nat.(eq T t2 (lift h x1 x0))(ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x0 t4)
                       assume x0T
                       assume x1nat
                       suppose H3eq T (THead (Flat Cast) u t2) (lift h x1 x0)
                         by (lift_gen_flat . . . . . . H3)
                         we proved 
                            ex3_2
                              T
                              T
                              λy:T.λz:T.eq T x0 (THead (Flat Cast) y z)
                              λy:T.λ:T.eq T u (lift h x1 y)
                              λ:T.λz:T.eq T t2 (lift h x1 z)
                         we proceed by induction on the previous result to prove ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x0 t4
                            case ex3_2_intro : x2:T x3:T H4:eq T x0 (THead (Flat Cast) x2 x3) :eq T u (lift h x1 x2) H6:eq T t2 (lift h x1 x3) 
                               the thesis becomes ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x0 t4
                                  by (H2 . . H6)
                                  we proved ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x3 t4
                                  we proceed by induction on the previous result to prove ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 (THead (Flat Cast) x2 x3) t4
                                     case ex_intro2 : x4:T H_x:eq T t3 (lift h x1 x4) H7:pr0 x3 x4 
                                        the thesis becomes ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 (THead (Flat Cast) x2 x3) t4
                                           (h1
                                              by (refl_equal . .)
eq T (lift h x1 x4) (lift h x1 x4)
                                           end of h1
                                           (h2
                                              by (pr0_tau . . H7 .)
pr0 (THead (Flat Cast) x2 x3) x4
                                           end of h2
                                           by (ex_intro2 . . . . h1 h2)
                                           we proved ex2 T λt4:T.eq T (lift h x1 x4) (lift h x1 t4) λt4:T.pr0 (THead (Flat Cast) x2 x3) t4
                                           by (eq_ind_r . . . previous . H_x)
ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 (THead (Flat Cast) x2 x3) t4
                                  we proved ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 (THead (Flat Cast) x2 x3) t4
                                  by (eq_ind_r . . . previous . H4)
ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x0 t4
                         we proved ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x0 t4

                         x0:T
                           .x1:nat
                             .H3:eq T (THead (Flat Cast) u t2) (lift h x1 x0)
                               .ex2 T λt4:T.eq T t3 (lift h x1 t4) λt4:T.pr0 x0 t4
             we proved x0:T.x1:nat.(eq T y (lift h x1 x0))(ex2 T λt2:T.eq T x (lift h x1 t2) λt2:T.pr0 x0 t2)
             by (unintro . . . previous)
             we proved x0:nat.(eq T y (lift h x0 t1))(ex2 T λt2:T.eq T x (lift h x0 t2) λt2:T.pr0 t1 t2)
             by (unintro . . . previous)
             we proved (eq T y (lift h d t1))(ex2 T λt2:T.eq T x (lift h d t2) λt2:T.pr0 t1 t2)
          we proved 
             y:T
               .pr0 y x
                 (eq T y (lift h d t1))(ex2 T λt2:T.eq T x (lift h d t2) λt2:T.pr0 t1 t2)
          by (insert_eq . . . . previous H)
          we proved ex2 T λt2:T.eq T x (lift h d t2) λt2:T.pr0 t1 t2
       we proved t1:T.x:T.h:nat.d:nat.(pr0 (lift h d t1) x)(ex2 T λt2:T.eq T x (lift h d t2) λt2:T.pr0 t1 t2)