DEFINITION pr0_gen_appl()
TYPE =
       u1:T
         .t1:T
           .x:T
             .pr0 (THead (Flat Appl) u1 t1) x
               (or3
                    ex3_2 T T λu2:T.λt2:T.eq T x (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr0 u1 u2 λ:T.λt2:T.pr0 t1 t2
                    ex4_4
                      T
                      T
                      T
                      T
                      λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                      λ:T.λ:T.λu2:T.λt2:T.eq T x (THead (Bind Abbr) u2 t2)
                      λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                      λ:T.λz1:T.λ:T.λt2:T.pr0 z1 t2
                    ex6_6
                      B
                      T
                      T
                      T
                      T
                      T
                      λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                      λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                      λb:B
                        .λ:T
                          .λ:T
                            .λu2:T
                              .λv2:T
                                .λt2:T
                                  .eq T x (THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u2) t2))
                      λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                      λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                      λ:B.λ:T.λz1:T.λ:T.λ:T.λt2:T.pr0 z1 t2)
BODY =
        assume u1T
        assume t1T
        assume xT
        suppose Hpr0 (THead (Flat Appl) u1 t1) x
           assume yT
           suppose H0pr0 y x
             we proceed by induction on H0 to prove 
                eq T y (THead (Flat Appl) u1 t1)
                  (or3
                       ex3_2 T T λu2:T.λt2:T.eq T x (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr0 u1 u2 λ:T.λt2:T.pr0 t1 t2
                       ex4_4
                         T
                         T
                         T
                         T
                         λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                         λ:T.λ:T.λu2:T.λt2:T.eq T x (THead (Bind Abbr) u2 t2)
                         λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                         λ:T.λz1:T.λ:T.λt2:T.pr0 z1 t2
                       ex6_6
                         B
                         T
                         T
                         T
                         T
                         T
                         λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                         λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                         λb:B
                           .λ:T
                             .λ:T
                               .λu2:T
                                 .λv2:T
                                   .λt2:T
                                     .eq T x (THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u2) t2))
                         λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                         λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                         λ:B.λ:T.λz1:T.λ:T.λ:T.λt2:T.pr0 z1 t2)
                case pr0_refl : t:T 
                   the thesis becomes 
                   H1:eq T t (THead (Flat Appl) u1 t1)
                     .or3
                       ex3_2 T T λu2:T.λt2:T.eq T t (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr0 u1 u2 λ:T.λt2:T.pr0 t1 t2
                       ex4_4
                         T
                         T
                         T
                         T
                         λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                         λ:T.λ:T.λu2:T.λt2:T.eq T t (THead (Bind Abbr) u2 t2)
                         λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                         λ:T.λz1:T.λ:T.λt2:T.pr0 z1 t2
                       ex6_6
                         B
                         T
                         T
                         T
                         T
                         T
                         λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                         λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                         λb:B
                           .λ:T
                             .λ:T
                               .λu2:T
                                 .λv2:T
                                   .λt2:T
                                     .eq T t (THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u2) t2))
                         λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                         λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                         λ:B.λ:T.λz1:T.λ:T.λ:T.λt2:T.pr0 z1 t2
                      suppose H1eq T t (THead (Flat Appl) u1 t1)
                         (H2
                            by (f_equal . . . . . H1)
                            we proved eq T t (THead (Flat Appl) u1 t1)
eq T (λe:T.e t) (λe:T.e (THead (Flat Appl) u1 t1))
                         end of H2
                         (h1
                            by (refl_equal . .)
eq T (THead (Flat Appl) u1 t1) (THead (Flat Appl) u1 t1)
                         end of h1
                         (h2by (pr0_refl .) we proved pr0 u1 u1
                         (h3by (pr0_refl .) we proved pr0 t1 t1
                         by (ex3_2_intro . . . . . . . h1 h2 h3)
                         we proved 
                            ex3_2
                              T
                              T
                              λu2:T.λt2:T.eq T (THead (Flat Appl) u1 t1) (THead (Flat Appl) u2 t2)
                              λu2:T.λ:T.pr0 u1 u2
                              λ:T.λt2:T.pr0 t1 t2
                         by (or3_intro0 . . . previous)
                         we proved 
                            or3
                              ex3_2
                                T
                                T
                                λu2:T.λt2:T.eq T (THead (Flat Appl) u1 t1) (THead (Flat Appl) u2 t2)
                                λu2:T.λ:T.pr0 u1 u2
                                λ:T.λt2:T.pr0 t1 t2
                              ex4_4
                                T
                                T
                                T
                                T
                                λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                λ:T.λ:T.λu2:T.λt2:T.eq T (THead (Flat Appl) u1 t1) (THead (Bind Abbr) u2 t2)
                                λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                                λ:T.λz1:T.λ:T.λt2:T.pr0 z1 t2
                              ex6_6
                                B
                                T
                                T
                                T
                                T
                                T
                                λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                                λb:B
                                  .λ:T
                                    .λ:T
                                      .λu2:T
                                        .λv2:T
                                          .λt2:T
                                            .eq
                                              T
                                              THead (Flat Appl) u1 t1
                                              THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u2) t2)
                                λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                                λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                                λ:B.λ:T.λz1:T.λ:T.λ:T.λt2:T.pr0 z1 t2
                         by (eq_ind_r . . . previous . H2)
                         we proved 
                            or3
                              ex3_2 T T λu2:T.λt2:T.eq T t (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr0 u1 u2 λ:T.λt2:T.pr0 t1 t2
                              ex4_4
                                T
                                T
                                T
                                T
                                λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                λ:T.λ:T.λu2:T.λt2:T.eq T t (THead (Bind Abbr) u2 t2)
                                λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                                λ:T.λz1:T.λ:T.λt2:T.pr0 z1 t2
                              ex6_6
                                B
                                T
                                T
                                T
                                T
                                T
                                λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                                λb:B
                                  .λ:T
                                    .λ:T
                                      .λu2:T
                                        .λv2:T
                                          .λt2:T
                                            .eq T t (THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u2) t2))
                                λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                                λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                                λ:B.λ:T.λz1:T.λ:T.λ:T.λt2:T.pr0 z1 t2

                         H1:eq T t (THead (Flat Appl) u1 t1)
                           .or3
                             ex3_2 T T λu2:T.λt2:T.eq T t (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr0 u1 u2 λ:T.λt2:T.pr0 t1 t2
                             ex4_4
                               T
                               T
                               T
                               T
                               λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                               λ:T.λ:T.λu2:T.λt2:T.eq T t (THead (Bind Abbr) u2 t2)
                               λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                               λ:T.λz1:T.λ:T.λt2:T.pr0 z1 t2
                             ex6_6
                               B
                               T
                               T
                               T
                               T
                               T
                               λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                               λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                               λb:B
                                 .λ:T
                                   .λ:T
                                     .λu2:T
                                       .λv2:T
                                         .λt2:T
                                           .eq T t (THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u2) t2))
                               λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                               λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt2:T.pr0 z1 t2
                case pr0_comp : u0:T u2:T H1:pr0 u0 u2 t0:T t2:T H3:pr0 t0 t2 k:K 
                   the thesis becomes 
                   H5:eq T (THead k u0 t0) (THead (Flat Appl) u1 t1)
                     .or3
                       ex3_2 T T λu3:T.λt3:T.eq T (THead k u2 t2) (THead (Flat Appl) u3 t3) λu3:T.λ:T.pr0 u1 u3 λ:T.λt3:T.pr0 t1 t3
                       ex4_4
                         T
                         T
                         T
                         T
                         λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                         λ:T.λ:T.λu3:T.λt3:T.eq T (THead k u2 t2) (THead (Bind Abbr) u3 t3)
                         λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                         λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                       ex6_6
                         B
                         T
                         T
                         T
                         T
                         T
                         λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                         λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                         λb:B
                           .λ:T
                             .λ:T
                               .λu3:T
                                 .λv2:T
                                   .λt3:T
                                     .eq
                                       T
                                       THead k u2 t2
                                       THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u3) t3)
                         λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                         λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                         λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                   (H2) by induction hypothesis we know 
                      eq T u0 (THead (Flat Appl) u1 t1)
                        (or3
                             ex3_2 T T λu3:T.λt2:T.eq T u2 (THead (Flat Appl) u3 t2) λu3:T.λ:T.pr0 u1 u3 λ:T.λt2:T.pr0 t1 t2
                             ex4_4
                               T
                               T
                               T
                               T
                               λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                               λ:T.λ:T.λu3:T.λt2:T.eq T u2 (THead (Bind Abbr) u3 t2)
                               λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                               λ:T.λz1:T.λ:T.λt2:T.pr0 z1 t2
                             ex6_6
                               B
                               T
                               T
                               T
                               T
                               T
                               λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                               λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                               λb:B
                                 .λ:T
                                   .λ:T
                                     .λu3:T
                                       .λv2:T
                                         .λt2:T.eq T u2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u3) t2))
                               λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                               λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt2:T.pr0 z1 t2)
                   (H4) by induction hypothesis we know 
                      eq T t0 (THead (Flat Appl) u1 t1)
                        (or3
                             ex3_2 T T λu3:T.λt3:T.eq T t2 (THead (Flat Appl) u3 t3) λu3:T.λ:T.pr0 u1 u3 λ:T.λt3:T.pr0 t1 t3
                             ex4_4
                               T
                               T
                               T
                               T
                               λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                               λ:T.λ:T.λu3:T.λt3:T.eq T t2 (THead (Bind Abbr) u3 t3)
                               λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                               λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                             ex6_6
                               B
                               T
                               T
                               T
                               T
                               T
                               λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                               λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                               λb:B
                                 .λ:T
                                   .λ:T
                                     .λu3:T
                                       .λv2:T
                                         .λt3:T.eq T t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u3) t3))
                               λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                               λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3)
                      suppose H5eq T (THead k u0 t0) (THead (Flat Appl) u1 t1)
                         (H6
                            by (f_equal . . . . . H5)
                            we proved 
                               eq
                                 K
                                 <λ:T.K> CASE THead k u0 t0 OF TSort k | TLRef k | THead k0  k0
                                 <λ:T.K> CASE THead (Flat Appl) u1 t1 OF TSort k | TLRef k | THead k0  k0

                               eq
                                 K
                                 λe:T.<λ:T.K> CASE e OF TSort k | TLRef k | THead k0  k0 (THead k u0 t0)
                                 λe:T.<λ:T.K> CASE e OF TSort k | TLRef k | THead k0  k0
                                   THead (Flat Appl) u1 t1
                         end of H6
                         (h1
                            (H7
                               by (f_equal . . . . . H5)
                               we proved 
                                  eq
                                    T
                                    <λ:T.T> CASE THead k u0 t0 OF TSort u0 | TLRef u0 | THead  t t
                                    <λ:T.T> CASE THead (Flat Appl) u1 t1 OF TSort u0 | TLRef u0 | THead  t t

                                  eq
                                    T
                                    λe:T.<λ:T.T> CASE e OF TSort u0 | TLRef u0 | THead  t t (THead k u0 t0)
                                    λe:T.<λ:T.T> CASE e OF TSort u0 | TLRef u0 | THead  t t
                                      THead (Flat Appl) u1 t1
                            end of H7
                            (h1
                               (H8
                                  by (f_equal . . . . . H5)
                                  we proved 
                                     eq
                                       T
                                       <λ:T.T> CASE THead k u0 t0 OF TSort t0 | TLRef t0 | THead   tt
                                       <λ:T.T> CASE THead (Flat Appl) u1 t1 OF TSort t0 | TLRef t0 | THead   tt

                                     eq
                                       T
                                       λe:T.<λ:T.T> CASE e OF TSort t0 | TLRef t0 | THead   tt (THead k u0 t0)
                                       λe:T.<λ:T.T> CASE e OF TSort t0 | TLRef t0 | THead   tt
                                         THead (Flat Appl) u1 t1
                               end of H8
                                suppose H9eq T u0 u1
                                suppose H10eq K k (Flat Appl)
                                  (H12
                                     consider H8
                                     we proved 
                                        eq
                                          T
                                          <λ:T.T> CASE THead k u0 t0 OF TSort t0 | TLRef t0 | THead   tt
                                          <λ:T.T> CASE THead (Flat Appl) u1 t1 OF TSort t0 | TLRef t0 | THead   tt
                                     that is equivalent to eq T t0 t1
                                     we proceed by induction on the previous result to prove pr0 t1 t2
                                        case refl_equal : 
                                           the thesis becomes the hypothesis H3
pr0 t1 t2
                                  end of H12
                                  (H14
                                     we proceed by induction on H9 to prove pr0 u1 u2
                                        case refl_equal : 
                                           the thesis becomes the hypothesis H1
pr0 u1 u2
                                  end of H14
                                  by (refl_equal . .)
                                  we proved eq T (THead (Flat Appl) u2 t2) (THead (Flat Appl) u2 t2)
                                  by (ex3_2_intro . . . . . . . previous H14 H12)
                                  we proved 
                                     ex3_2
                                       T
                                       T
                                       λu3:T.λt3:T.eq T (THead (Flat Appl) u2 t2) (THead (Flat Appl) u3 t3)
                                       λu3:T.λ:T.pr0 u1 u3
                                       λ:T.λt3:T.pr0 t1 t3
                                  by (or3_intro0 . . . previous)
                                  we proved 
                                     or3
                                       ex3_2
                                         T
                                         T
                                         λu3:T.λt3:T.eq T (THead (Flat Appl) u2 t2) (THead (Flat Appl) u3 t3)
                                         λu3:T.λ:T.pr0 u1 u3
                                         λ:T.λt3:T.pr0 t1 t3
                                       ex4_4
                                         T
                                         T
                                         T
                                         T
                                         λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                         λ:T.λ:T.λu3:T.λt3:T.eq T (THead (Flat Appl) u2 t2) (THead (Bind Abbr) u3 t3)
                                         λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                                         λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                                       ex6_6
                                         B
                                         T
                                         T
                                         T
                                         T
                                         T
                                         λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                         λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                                         λb:B
                                           .λ:T
                                             .λ:T
                                               .λu3:T
                                                 .λv2:T
                                                   .λt3:T
                                                     .eq
                                                       T
                                                       THead (Flat Appl) u2 t2
                                                       THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u3) t3)
                                         λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                                         λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                                         λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                                  by (eq_ind_r . . . previous . H10)
                                  we proved 
                                     or3
                                       ex3_2 T T λu3:T.λt3:T.eq T (THead k u2 t2) (THead (Flat Appl) u3 t3) λu3:T.λ:T.pr0 u1 u3 λ:T.λt3:T.pr0 t1 t3
                                       ex4_4
                                         T
                                         T
                                         T
                                         T
                                         λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                         λ:T.λ:T.λu3:T.λt3:T.eq T (THead k u2 t2) (THead (Bind Abbr) u3 t3)
                                         λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                                         λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                                       ex6_6
                                         B
                                         T
                                         T
                                         T
                                         T
                                         T
                                         λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                         λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                                         λb:B
                                           .λ:T
                                             .λ:T
                                               .λu3:T
                                                 .λv2:T
                                                   .λt3:T
                                                     .eq
                                                       T
                                                       THead k u2 t2
                                                       THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u3) t3)
                                         λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                                         λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                                         λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3

                                  eq T u0 u1
                                    (eq K k (Flat Appl)
                                         (or3
                                              ex3_2 T T λu3:T.λt3:T.eq T (THead k u2 t2) (THead (Flat Appl) u3 t3) λu3:T.λ:T.pr0 u1 u3 λ:T.λt3:T.pr0 t1 t3
                                              ex4_4
                                                T
                                                T
                                                T
                                                T
                                                λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                                λ:T.λ:T.λu3:T.λt3:T.eq T (THead k u2 t2) (THead (Bind Abbr) u3 t3)
                                                λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                                                λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                                              ex6_6
                                                B
                                                T
                                                T
                                                T
                                                T
                                                T
                                                λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                                λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                                                λb:B
                                                  .λ:T
                                                    .λ:T
                                                      .λu3:T
                                                        .λv2:T
                                                          .λt3:T
                                                            .eq
                                                              T
                                                              THead k u2 t2
                                                              THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u3) t3)
                                                λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                                                λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                                                λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3))
                            end of h1
                            (h2
                               consider H7
                               we proved 
                                  eq
                                    T
                                    <λ:T.T> CASE THead k u0 t0 OF TSort u0 | TLRef u0 | THead  t t
                                    <λ:T.T> CASE THead (Flat Appl) u1 t1 OF TSort u0 | TLRef u0 | THead  t t
eq T u0 u1
                            end of h2
                            by (h1 h2)

                               eq K k (Flat Appl)
                                 (or3
                                      ex3_2 T T λu3:T.λt3:T.eq T (THead k u2 t2) (THead (Flat Appl) u3 t3) λu3:T.λ:T.pr0 u1 u3 λ:T.λt3:T.pr0 t1 t3
                                      ex4_4
                                        T
                                        T
                                        T
                                        T
                                        λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                        λ:T.λ:T.λu3:T.λt3:T.eq T (THead k u2 t2) (THead (Bind Abbr) u3 t3)
                                        λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                                        λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                                      ex6_6
                                        B
                                        T
                                        T
                                        T
                                        T
                                        T
                                        λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                        λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                                        λb:B
                                          .λ:T
                                            .λ:T
                                              .λu3:T
                                                .λv2:T
                                                  .λt3:T
                                                    .eq
                                                      T
                                                      THead k u2 t2
                                                      THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u3) t3)
                                        λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                                        λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                                        λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3)
                         end of h1
                         (h2
                            consider H6
                            we proved 
                               eq
                                 K
                                 <λ:T.K> CASE THead k u0 t0 OF TSort k | TLRef k | THead k0  k0
                                 <λ:T.K> CASE THead (Flat Appl) u1 t1 OF TSort k | TLRef k | THead k0  k0
eq K k (Flat Appl)
                         end of h2
                         by (h1 h2)
                         we proved 
                            or3
                              ex3_2 T T λu3:T.λt3:T.eq T (THead k u2 t2) (THead (Flat Appl) u3 t3) λu3:T.λ:T.pr0 u1 u3 λ:T.λt3:T.pr0 t1 t3
                              ex4_4
                                T
                                T
                                T
                                T
                                λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                λ:T.λ:T.λu3:T.λt3:T.eq T (THead k u2 t2) (THead (Bind Abbr) u3 t3)
                                λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                                λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                              ex6_6
                                B
                                T
                                T
                                T
                                T
                                T
                                λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                                λb:B
                                  .λ:T
                                    .λ:T
                                      .λu3:T
                                        .λv2:T
                                          .λt3:T
                                            .eq
                                              T
                                              THead k u2 t2
                                              THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u3) t3)
                                λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                                λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                                λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3

                         H5:eq T (THead k u0 t0) (THead (Flat Appl) u1 t1)
                           .or3
                             ex3_2 T T λu3:T.λt3:T.eq T (THead k u2 t2) (THead (Flat Appl) u3 t3) λu3:T.λ:T.pr0 u1 u3 λ:T.λt3:T.pr0 t1 t3
                             ex4_4
                               T
                               T
                               T
                               T
                               λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                               λ:T.λ:T.λu3:T.λt3:T.eq T (THead k u2 t2) (THead (Bind Abbr) u3 t3)
                               λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                               λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                             ex6_6
                               B
                               T
                               T
                               T
                               T
                               T
                               λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                               λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                               λb:B
                                 .λ:T
                                   .λ:T
                                     .λu3:T
                                       .λv2:T
                                         .λt3:T
                                           .eq
                                             T
                                             THead k u2 t2
                                             THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u3) t3)
                               λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                               λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                case pr0_beta : u:T v1:T v2:T H1:pr0 v1 v2 t0:T t2:T H3:pr0 t0 t2 
                   the thesis becomes 
                   H5:eq
                              T
                              THead (Flat Appl) v1 (THead (Bind Abst) u t0)
                              THead (Flat Appl) u1 t1
                     .or3
                       ex3_2
                         T
                         T
                         λu2:T.λt3:T.eq T (THead (Bind Abbr) v2 t2) (THead (Flat Appl) u2 t3)
                         λu2:T.λ:T.pr0 u1 u2
                         λ:T.λt3:T.pr0 t1 t3
                       ex4_4
                         T
                         T
                         T
                         T
                         λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                         λ:T.λ:T.λu2:T.λt3:T.eq T (THead (Bind Abbr) v2 t2) (THead (Bind Abbr) u2 t3)
                         λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                         λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                       ex6_6
                         B
                         T
                         T
                         T
                         T
                         T
                         λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                         λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                         λb:B
                           .λ:T
                             .λ:T
                               .λu2:T
                                 .λv3:T
                                   .λt3:T
                                     .eq
                                       T
                                       THead (Bind Abbr) v2 t2
                                       THead (Bind b) v3 (THead (Flat Appl) (lift (S OO u2) t3)
                         λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                         λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                         λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                   (H2) by induction hypothesis we know 
                      eq T v1 (THead (Flat Appl) u1 t1)
                        (or3
                             ex3_2 T T λu2:T.λt2:T.eq T v2 (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr0 u1 u2 λ:T.λt2:T.pr0 t1 t2
                             ex4_4
                               T
                               T
                               T
                               T
                               λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                               λ:T.λ:T.λu2:T.λt2:T.eq T v2 (THead (Bind Abbr) u2 t2)
                               λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                               λ:T.λz1:T.λ:T.λt2:T.pr0 z1 t2
                             ex6_6
                               B
                               T
                               T
                               T
                               T
                               T
                               λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                               λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                               λb:B
                                 .λ:T
                                   .λ:T
                                     .λu2:T
                                       .λv3:T
                                         .λt2:T.eq T v2 (THead (Bind b) v3 (THead (Flat Appl) (lift (S OO u2) t2))
                               λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                               λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt2:T.pr0 z1 t2)
                   (H4) by induction hypothesis we know 
                      eq T t0 (THead (Flat Appl) u1 t1)
                        (or3
                             ex3_2 T T λu2:T.λt3:T.eq T t2 (THead (Flat Appl) u2 t3) λu2:T.λ:T.pr0 u1 u2 λ:T.λt3:T.pr0 t1 t3
                             ex4_4
                               T
                               T
                               T
                               T
                               λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                               λ:T.λ:T.λu2:T.λt3:T.eq T t2 (THead (Bind Abbr) u2 t3)
                               λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                               λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                             ex6_6
                               B
                               T
                               T
                               T
                               T
                               T
                               λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                               λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                               λb:B
                                 .λ:T
                                   .λ:T
                                     .λu2:T
                                       .λv3:T
                                         .λt3:T.eq T t2 (THead (Bind b) v3 (THead (Flat Appl) (lift (S OO u2) t3))
                               λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                               λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3)
                      suppose H5
                         eq
                           T
                           THead (Flat Appl) v1 (THead (Bind Abst) u t0)
                           THead (Flat Appl) u1 t1
                         (H6
                            by (f_equal . . . . . H5)
                            we proved 
                               eq
                                 T
                                 <λ:T.T>
                                   CASE THead (Flat Appl) v1 (THead (Bind Abst) u t0) OF
                                     TSort v1
                                   | TLRef v1
                                   | THead  t t
                                 <λ:T.T> CASE THead (Flat Appl) u1 t1 OF TSort v1 | TLRef v1 | THead  t t

                               eq
                                 T
                                 λe:T.<λ:T.T> CASE e OF TSort v1 | TLRef v1 | THead  t t
                                   THead (Flat Appl) v1 (THead (Bind Abst) u t0)
                                 λe:T.<λ:T.T> CASE e OF TSort v1 | TLRef v1 | THead  t t
                                   THead (Flat Appl) u1 t1
                         end of H6
                         (h1
                            (H7
                               by (f_equal . . . . . H5)
                               we proved 
                                  eq
                                    T
                                    <λ:T.T>
                                      CASE THead (Flat Appl) v1 (THead (Bind Abst) u t0) OF
                                        TSort THead (Bind Abst) u t0
                                      | TLRef THead (Bind Abst) u t0
                                      | THead   tt
                                    <λ:T.T>
                                      CASE THead (Flat Appl) u1 t1 OF
                                        TSort THead (Bind Abst) u t0
                                      | TLRef THead (Bind Abst) u t0
                                      | THead   tt

                                  eq
                                    T
                                    λe:T
                                        .<λ:T.T>
                                          CASE e OF
                                            TSort THead (Bind Abst) u t0
                                          | TLRef THead (Bind Abst) u t0
                                          | THead   tt
                                      THead (Flat Appl) v1 (THead (Bind Abst) u t0)
                                    λe:T
                                        .<λ:T.T>
                                          CASE e OF
                                            TSort THead (Bind Abst) u t0
                                          | TLRef THead (Bind Abst) u t0
                                          | THead   tt
                                      THead (Flat Appl) u1 t1
                            end of H7
                            suppose H8eq T v1 u1
                               (H9
                                  we proceed by induction on H8 to prove 
                                     eq T u1 (THead (Flat Appl) u1 t1)
                                       (or3
                                            ex3_2 T T λu2:T.λt3:T.eq T v2 (THead (Flat Appl) u2 t3) λu2:T.λ:T.pr0 u1 u2 λ:T.λt3:T.pr0 t1 t3
                                            ex4_4
                                              T
                                              T
                                              T
                                              T
                                              λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                              λ:T.λ:T.λu2:T.λt3:T.eq T v2 (THead (Bind Abbr) u2 t3)
                                              λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                                              λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                                            ex6_6
                                              B
                                              T
                                              T
                                              T
                                              T
                                              T
                                              λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                              λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                                              λb:B
                                                .λ:T
                                                  .λ:T
                                                    .λu2:T
                                                      .λv3:T
                                                        .λt3:T.eq T v2 (THead (Bind b) v3 (THead (Flat Appl) (lift (S OO u2) t3))
                                              λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                                              λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                                              λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3)
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H2

                                     eq T u1 (THead (Flat Appl) u1 t1)
                                       (or3
                                            ex3_2 T T λu2:T.λt3:T.eq T v2 (THead (Flat Appl) u2 t3) λu2:T.λ:T.pr0 u1 u2 λ:T.λt3:T.pr0 t1 t3
                                            ex4_4
                                              T
                                              T
                                              T
                                              T
                                              λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                              λ:T.λ:T.λu2:T.λt3:T.eq T v2 (THead (Bind Abbr) u2 t3)
                                              λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                                              λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                                            ex6_6
                                              B
                                              T
                                              T
                                              T
                                              T
                                              T
                                              λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                              λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                                              λb:B
                                                .λ:T
                                                  .λ:T
                                                    .λu2:T
                                                      .λv3:T
                                                        .λt3:T.eq T v2 (THead (Bind b) v3 (THead (Flat Appl) (lift (S OO u2) t3))
                                              λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                                              λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                                              λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3)
                               end of H9
                               (H10
                                  we proceed by induction on H8 to prove pr0 u1 v2
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H1
pr0 u1 v2
                               end of H10
                               consider H7
                               we proved 
                                  eq
                                    T
                                    <λ:T.T>
                                      CASE THead (Flat Appl) v1 (THead (Bind Abst) u t0) OF
                                        TSort THead (Bind Abst) u t0
                                      | TLRef THead (Bind Abst) u t0
                                      | THead   tt
                                    <λ:T.T>
                                      CASE THead (Flat Appl) u1 t1 OF
                                        TSort THead (Bind Abst) u t0
                                      | TLRef THead (Bind Abst) u t0
                                      | THead   tt
                               that is equivalent to eq T (THead (Bind Abst) u t0) t1
                               we proceed by induction on the previous result to prove 
                                  or3
                                    ex3_2
                                      T
                                      T
                                      λu2:T.λt3:T.eq T (THead (Bind Abbr) v2 t2) (THead (Flat Appl) u2 t3)
                                      λu2:T.λ:T.pr0 u1 u2
                                      λ:T.λt3:T.pr0 t1 t3
                                    ex4_4
                                      T
                                      T
                                      T
                                      T
                                      λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                      λ:T.λ:T.λu2:T.λt3:T.eq T (THead (Bind Abbr) v2 t2) (THead (Bind Abbr) u2 t3)
                                      λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                                      λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                                    ex6_6
                                      B
                                      T
                                      T
                                      T
                                      T
                                      T
                                      λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                      λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                                      λb:B
                                        .λ:T
                                          .λ:T
                                            .λu2:T
                                              .λv3:T
                                                .λt3:T
                                                  .eq
                                                    T
                                                    THead (Bind Abbr) v2 t2
                                                    THead (Bind b) v3 (THead (Flat Appl) (lift (S OO u2) t3)
                                      λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                                      λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                                      λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                                  case refl_equal : 
                                     the thesis becomes 
                                     or3
                                       ex3_2
                                         T
                                         T
                                         λu2:T.λt3:T.eq T (THead (Bind Abbr) v2 t2) (THead (Flat Appl) u2 t3)
                                         λu2:T.λ:T.pr0 u1 u2
                                         λ:T.λt3:T.pr0 (THead (Bind Abst) u t0) t3
                                       ex4_4
                                         T
                                         T
                                         T
                                         T
                                         λy1:T.λz1:T.λ:T.λ:T.eq T (THead (Bind Abst) u t0) (THead (Bind Abst) y1 z1)
                                         λ:T.λ:T.λu2:T.λt3:T.eq T (THead (Bind Abbr) v2 t2) (THead (Bind Abbr) u2 t3)
                                         λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                                         λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                                       ex6_6
                                         B
                                         T
                                         T
                                         T
                                         T
                                         T
                                         λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                         λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T (THead (Bind Abst) u t0) (THead (Bind b) y1 z1)
                                         λb:B
                                           .λ:T
                                             .λ:T
                                               .λu2:T
                                                 .λv3:T
                                                   .λt3:T
                                                     .eq
                                                       T
                                                       THead (Bind Abbr) v2 t2
                                                       THead (Bind b) v3 (THead (Flat Appl) (lift (S OO u2) t3)
                                         λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                                         λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                                         λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                                        (h1
                                           by (refl_equal . .)
eq T (THead (Bind Abst) u t0) (THead (Bind Abst) u t0)
                                        end of h1
                                        (h2
                                           by (refl_equal . .)
eq T (THead (Bind Abbr) v2 t2) (THead (Bind Abbr) v2 t2)
                                        end of h2
                                        by (ex4_4_intro . . . . . . . . . . . . h1 h2 H10 H3)
                                        we proved 
                                           ex4_4
                                             T
                                             T
                                             T
                                             T
                                             λy1:T.λz1:T.λ:T.λ:T.eq T (THead (Bind Abst) u t0) (THead (Bind Abst) y1 z1)
                                             λ:T.λ:T.λu2:T.λt3:T.eq T (THead (Bind Abbr) v2 t2) (THead (Bind Abbr) u2 t3)
                                             λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                                             λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                                        by (or3_intro1 . . . previous)

                                           or3
                                             ex3_2
                                               T
                                               T
                                               λu2:T.λt3:T.eq T (THead (Bind Abbr) v2 t2) (THead (Flat Appl) u2 t3)
                                               λu2:T.λ:T.pr0 u1 u2
                                               λ:T.λt3:T.pr0 (THead (Bind Abst) u t0) t3
                                             ex4_4
                                               T
                                               T
                                               T
                                               T
                                               λy1:T.λz1:T.λ:T.λ:T.eq T (THead (Bind Abst) u t0) (THead (Bind Abst) y1 z1)
                                               λ:T.λ:T.λu2:T.λt3:T.eq T (THead (Bind Abbr) v2 t2) (THead (Bind Abbr) u2 t3)
                                               λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                                               λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                                             ex6_6
                                               B
                                               T
                                               T
                                               T
                                               T
                                               T
                                               λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                               λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T (THead (Bind Abst) u t0) (THead (Bind b) y1 z1)
                                               λb:B
                                                 .λ:T
                                                   .λ:T
                                                     .λu2:T
                                                       .λv3:T
                                                         .λt3:T
                                                           .eq
                                                             T
                                                             THead (Bind Abbr) v2 t2
                                                             THead (Bind b) v3 (THead (Flat Appl) (lift (S OO u2) t3)
                                               λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                                               λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                               we proved 
                                  or3
                                    ex3_2
                                      T
                                      T
                                      λu2:T.λt3:T.eq T (THead (Bind Abbr) v2 t2) (THead (Flat Appl) u2 t3)
                                      λu2:T.λ:T.pr0 u1 u2
                                      λ:T.λt3:T.pr0 t1 t3
                                    ex4_4
                                      T
                                      T
                                      T
                                      T
                                      λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                      λ:T.λ:T.λu2:T.λt3:T.eq T (THead (Bind Abbr) v2 t2) (THead (Bind Abbr) u2 t3)
                                      λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                                      λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                                    ex6_6
                                      B
                                      T
                                      T
                                      T
                                      T
                                      T
                                      λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                      λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                                      λb:B
                                        .λ:T
                                          .λ:T
                                            .λu2:T
                                              .λv3:T
                                                .λt3:T
                                                  .eq
                                                    T
                                                    THead (Bind Abbr) v2 t2
                                                    THead (Bind b) v3 (THead (Flat Appl) (lift (S OO u2) t3)
                                      λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                                      λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                                      λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3

                               eq T v1 u1
                                 (or3
                                      ex3_2
                                        T
                                        T
                                        λu2:T.λt3:T.eq T (THead (Bind Abbr) v2 t2) (THead (Flat Appl) u2 t3)
                                        λu2:T.λ:T.pr0 u1 u2
                                        λ:T.λt3:T.pr0 t1 t3
                                      ex4_4
                                        T
                                        T
                                        T
                                        T
                                        λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                        λ:T.λ:T.λu2:T.λt3:T.eq T (THead (Bind Abbr) v2 t2) (THead (Bind Abbr) u2 t3)
                                        λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                                        λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                                      ex6_6
                                        B
                                        T
                                        T
                                        T
                                        T
                                        T
                                        λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                        λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                                        λb:B
                                          .λ:T
                                            .λ:T
                                              .λu2:T
                                                .λv3:T
                                                  .λt3:T
                                                    .eq
                                                      T
                                                      THead (Bind Abbr) v2 t2
                                                      THead (Bind b) v3 (THead (Flat Appl) (lift (S OO u2) t3)
                                        λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                                        λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                                        λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3)
                         end of h1
                         (h2
                            consider H6
                            we proved 
                               eq
                                 T
                                 <λ:T.T>
                                   CASE THead (Flat Appl) v1 (THead (Bind Abst) u t0) OF
                                     TSort v1
                                   | TLRef v1
                                   | THead  t t
                                 <λ:T.T> CASE THead (Flat Appl) u1 t1 OF TSort v1 | TLRef v1 | THead  t t
eq T v1 u1
                         end of h2
                         by (h1 h2)
                         we proved 
                            or3
                              ex3_2
                                T
                                T
                                λu2:T.λt3:T.eq T (THead (Bind Abbr) v2 t2) (THead (Flat Appl) u2 t3)
                                λu2:T.λ:T.pr0 u1 u2
                                λ:T.λt3:T.pr0 t1 t3
                              ex4_4
                                T
                                T
                                T
                                T
                                λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                λ:T.λ:T.λu2:T.λt3:T.eq T (THead (Bind Abbr) v2 t2) (THead (Bind Abbr) u2 t3)
                                λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                                λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                              ex6_6
                                B
                                T
                                T
                                T
                                T
                                T
                                λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                                λb:B
                                  .λ:T
                                    .λ:T
                                      .λu2:T
                                        .λv3:T
                                          .λt3:T
                                            .eq
                                              T
                                              THead (Bind Abbr) v2 t2
                                              THead (Bind b) v3 (THead (Flat Appl) (lift (S OO u2) t3)
                                λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                                λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                                λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3

                         H5:eq
                                    T
                                    THead (Flat Appl) v1 (THead (Bind Abst) u t0)
                                    THead (Flat Appl) u1 t1
                           .or3
                             ex3_2
                               T
                               T
                               λu2:T.λt3:T.eq T (THead (Bind Abbr) v2 t2) (THead (Flat Appl) u2 t3)
                               λu2:T.λ:T.pr0 u1 u2
                               λ:T.λt3:T.pr0 t1 t3
                             ex4_4
                               T
                               T
                               T
                               T
                               λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                               λ:T.λ:T.λu2:T.λt3:T.eq T (THead (Bind Abbr) v2 t2) (THead (Bind Abbr) u2 t3)
                               λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                               λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                             ex6_6
                               B
                               T
                               T
                               T
                               T
                               T
                               λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                               λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                               λb:B
                                 .λ:T
                                   .λ:T
                                     .λu2:T
                                       .λv3:T
                                         .λt3:T
                                           .eq
                                             T
                                             THead (Bind Abbr) v2 t2
                                             THead (Bind b) v3 (THead (Flat Appl) (lift (S OO u2) t3)
                               λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                               λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                case pr0_upsilon : b:B H1:not (eq B b Abst) v1:T v2:T H2:pr0 v1 v2 u0:T u2:T H4:pr0 u0 u2 t0:T t2:T H6:pr0 t0 t2 
                   the thesis becomes 
                   H8:eq
                              T
                              THead (Flat Appl) v1 (THead (Bind b) u0 t0)
                              THead (Flat Appl) u1 t1
                     .or3
                       ex3_2
                         T
                         T
                         λu3:T
                           .λt3:T
                             .eq
                               T
                               THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                               THead (Flat Appl) u3 t3
                         λu3:T.λ:T.pr0 u1 u3
                         λ:T.λt3:T.pr0 t1 t3
                       ex4_4
                         T
                         T
                         T
                         T
                         λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                         λ:T
                           .λ:T
                             .λu3:T
                               .λt3:T
                                 .eq
                                   T
                                   THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                   THead (Bind Abbr) u3 t3
                         λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                         λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                       ex6_6
                         B
                         T
                         T
                         T
                         T
                         T
                         λb0:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b0 Abst)
                         λb0:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b0) y1 z1)
                         λb0:B
                           .λ:T
                             .λ:T
                               .λu3:T
                                 .λv3:T
                                   .λt3:T
                                     .eq
                                       T
                                       THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                       THead (Bind b0) v3 (THead (Flat Appl) (lift (S OO u3) t3)
                         λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                         λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                         λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                   (H3) by induction hypothesis we know 
                      eq T v1 (THead (Flat Appl) u1 t1)
                        (or3
                             ex3_2 T T λu2:T.λt2:T.eq T v2 (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr0 u1 u2 λ:T.λt2:T.pr0 t1 t2
                             ex4_4
                               T
                               T
                               T
                               T
                               λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                               λ:T.λ:T.λu2:T.λt2:T.eq T v2 (THead (Bind Abbr) u2 t2)
                               λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                               λ:T.λz1:T.λ:T.λt2:T.pr0 z1 t2
                             ex6_6
                               B
                               T
                               T
                               T
                               T
                               T
                               λb0:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b0 Abst)
                               λb0:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b0) y1 z1)
                               λb0:B
                                 .λ:T
                                   .λ:T
                                     .λu2:T
                                       .λv3:T.λt2:T.eq T v2 (THead (Bind b0) v3 (THead (Flat Appl) (lift (S OO u2) t2))
                               λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                               λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt2:T.pr0 z1 t2)
                   (H5) by induction hypothesis we know 
                      eq T u0 (THead (Flat Appl) u1 t1)
                        (or3
                             ex3_2 T T λu3:T.λt2:T.eq T u2 (THead (Flat Appl) u3 t2) λu3:T.λ:T.pr0 u1 u3 λ:T.λt2:T.pr0 t1 t2
                             ex4_4
                               T
                               T
                               T
                               T
                               λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                               λ:T.λ:T.λu3:T.λt2:T.eq T u2 (THead (Bind Abbr) u3 t2)
                               λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                               λ:T.λz1:T.λ:T.λt2:T.pr0 z1 t2
                             ex6_6
                               B
                               T
                               T
                               T
                               T
                               T
                               λb0:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b0 Abst)
                               λb0:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b0) y1 z1)
                               λb0:B
                                 .λ:T
                                   .λ:T
                                     .λu3:T
                                       .λv3:T.λt2:T.eq T u2 (THead (Bind b0) v3 (THead (Flat Appl) (lift (S OO u3) t2))
                               λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                               λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt2:T.pr0 z1 t2)
                   (H7) by induction hypothesis we know 
                      eq T t0 (THead (Flat Appl) u1 t1)
                        (or3
                             ex3_2 T T λu3:T.λt3:T.eq T t2 (THead (Flat Appl) u3 t3) λu3:T.λ:T.pr0 u1 u3 λ:T.λt3:T.pr0 t1 t3
                             ex4_4
                               T
                               T
                               T
                               T
                               λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                               λ:T.λ:T.λu3:T.λt3:T.eq T t2 (THead (Bind Abbr) u3 t3)
                               λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                               λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                             ex6_6
                               B
                               T
                               T
                               T
                               T
                               T
                               λb0:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b0 Abst)
                               λb0:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b0) y1 z1)
                               λb0:B
                                 .λ:T
                                   .λ:T
                                     .λu3:T
                                       .λv3:T.λt3:T.eq T t2 (THead (Bind b0) v3 (THead (Flat Appl) (lift (S OO u3) t3))
                               λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                               λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3)
                      suppose H8
                         eq
                           T
                           THead (Flat Appl) v1 (THead (Bind b) u0 t0)
                           THead (Flat Appl) u1 t1
                         (H9
                            by (f_equal . . . . . H8)
                            we proved 
                               eq
                                 T
                                 <λ:T.T>
                                   CASE THead (Flat Appl) v1 (THead (Bind b) u0 t0) OF
                                     TSort v1
                                   | TLRef v1
                                   | THead  t t
                                 <λ:T.T> CASE THead (Flat Appl) u1 t1 OF TSort v1 | TLRef v1 | THead  t t

                               eq
                                 T
                                 λe:T.<λ:T.T> CASE e OF TSort v1 | TLRef v1 | THead  t t
                                   THead (Flat Appl) v1 (THead (Bind b) u0 t0)
                                 λe:T.<λ:T.T> CASE e OF TSort v1 | TLRef v1 | THead  t t
                                   THead (Flat Appl) u1 t1
                         end of H9
                         (h1
                            (H10
                               by (f_equal . . . . . H8)
                               we proved 
                                  eq
                                    T
                                    <λ:T.T>
                                      CASE THead (Flat Appl) v1 (THead (Bind b) u0 t0) OF
                                        TSort THead (Bind b) u0 t0
                                      | TLRef THead (Bind b) u0 t0
                                      | THead   tt
                                    <λ:T.T>
                                      CASE THead (Flat Appl) u1 t1 OF
                                        TSort THead (Bind b) u0 t0
                                      | TLRef THead (Bind b) u0 t0
                                      | THead   tt

                                  eq
                                    T
                                    λe:T
                                        .<λ:T.T>
                                          CASE e OF
                                            TSort THead (Bind b) u0 t0
                                          | TLRef THead (Bind b) u0 t0
                                          | THead   tt
                                      THead (Flat Appl) v1 (THead (Bind b) u0 t0)
                                    λe:T
                                        .<λ:T.T>
                                          CASE e OF
                                            TSort THead (Bind b) u0 t0
                                          | TLRef THead (Bind b) u0 t0
                                          | THead   tt
                                      THead (Flat Appl) u1 t1
                            end of H10
                            suppose H11eq T v1 u1
                               (H12
                                  we proceed by induction on H11 to prove 
                                     eq T u1 (THead (Flat Appl) u1 t1)
                                       (or3
                                            ex3_2 T T λu3:T.λt3:T.eq T v2 (THead (Flat Appl) u3 t3) λu3:T.λ:T.pr0 u1 u3 λ:T.λt3:T.pr0 t1 t3
                                            ex4_4
                                              T
                                              T
                                              T
                                              T
                                              λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                              λ:T.λ:T.λu3:T.λt3:T.eq T v2 (THead (Bind Abbr) u3 t3)
                                              λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                                              λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                                            ex6_6
                                              B
                                              T
                                              T
                                              T
                                              T
                                              T
                                              λb0:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b0 Abst)
                                              λb0:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b0) y1 z1)
                                              λb0:B
                                                .λ:T
                                                  .λ:T
                                                    .λu3:T
                                                      .λv3:T.λt3:T.eq T v2 (THead (Bind b0) v3 (THead (Flat Appl) (lift (S OO u3) t3))
                                              λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                                              λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                                              λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3)
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H3

                                     eq T u1 (THead (Flat Appl) u1 t1)
                                       (or3
                                            ex3_2 T T λu3:T.λt3:T.eq T v2 (THead (Flat Appl) u3 t3) λu3:T.λ:T.pr0 u1 u3 λ:T.λt3:T.pr0 t1 t3
                                            ex4_4
                                              T
                                              T
                                              T
                                              T
                                              λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                              λ:T.λ:T.λu3:T.λt3:T.eq T v2 (THead (Bind Abbr) u3 t3)
                                              λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                                              λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                                            ex6_6
                                              B
                                              T
                                              T
                                              T
                                              T
                                              T
                                              λb0:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b0 Abst)
                                              λb0:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b0) y1 z1)
                                              λb0:B
                                                .λ:T
                                                  .λ:T
                                                    .λu3:T
                                                      .λv3:T.λt3:T.eq T v2 (THead (Bind b0) v3 (THead (Flat Appl) (lift (S OO u3) t3))
                                              λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                                              λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                                              λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3)
                               end of H12
                               (H13
                                  we proceed by induction on H11 to prove pr0 u1 v2
                                     case refl_equal : 
                                        the thesis becomes the hypothesis H2
pr0 u1 v2
                               end of H13
                               consider H10
                               we proved 
                                  eq
                                    T
                                    <λ:T.T>
                                      CASE THead (Flat Appl) v1 (THead (Bind b) u0 t0) OF
                                        TSort THead (Bind b) u0 t0
                                      | TLRef THead (Bind b) u0 t0
                                      | THead   tt
                                    <λ:T.T>
                                      CASE THead (Flat Appl) u1 t1 OF
                                        TSort THead (Bind b) u0 t0
                                      | TLRef THead (Bind b) u0 t0
                                      | THead   tt
                               that is equivalent to eq T (THead (Bind b) u0 t0) t1
                               we proceed by induction on the previous result to prove 
                                  or3
                                    ex3_2
                                      T
                                      T
                                      λu3:T
                                        .λt3:T
                                          .eq
                                            T
                                            THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                            THead (Flat Appl) u3 t3
                                      λu3:T.λ:T.pr0 u1 u3
                                      λ:T.λt3:T.pr0 t1 t3
                                    ex4_4
                                      T
                                      T
                                      T
                                      T
                                      λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                      λ:T
                                        .λ:T
                                          .λu3:T
                                            .λt3:T
                                              .eq
                                                T
                                                THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                                THead (Bind Abbr) u3 t3
                                      λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                                      λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                                    ex6_6
                                      B
                                      T
                                      T
                                      T
                                      T
                                      T
                                      λb0:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b0 Abst)
                                      λb0:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b0) y1 z1)
                                      λb0:B
                                        .λ:T
                                          .λ:T
                                            .λu3:T
                                              .λv3:T
                                                .λt3:T
                                                  .eq
                                                    T
                                                    THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                                    THead (Bind b0) v3 (THead (Flat Appl) (lift (S OO u3) t3)
                                      λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                                      λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                                      λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                                  case refl_equal : 
                                     the thesis becomes 
                                     or3
                                       ex3_2
                                         T
                                         T
                                         λu3:T
                                           .λt3:T
                                             .eq
                                               T
                                               THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                               THead (Flat Appl) u3 t3
                                         λu3:T.λ:T.pr0 u1 u3
                                         λ:T.λt3:T.pr0 (THead (Bind b) u0 t0) t3
                                       ex4_4
                                         T
                                         T
                                         T
                                         T
                                         λy1:T.λz1:T.λ:T.λ:T.eq T (THead (Bind b) u0 t0) (THead (Bind Abst) y1 z1)
                                         λ:T
                                           .λ:T
                                             .λu3:T
                                               .λt3:T
                                                 .eq
                                                   T
                                                   THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                                   THead (Bind Abbr) u3 t3
                                         λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                                         λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                                       ex6_6
                                         B
                                         T
                                         T
                                         T
                                         T
                                         T
                                         λb0:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b0 Abst)
                                         λb0:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T (THead (Bind b) u0 t0) (THead (Bind b0) y1 z1)
                                         λb0:B
                                           .λ:T
                                             .λ:T
                                               .λu3:T
                                                 .λv3:T
                                                   .λt3:T
                                                     .eq
                                                       T
                                                       THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                                       THead (Bind b0) v3 (THead (Flat Appl) (lift (S OO u3) t3)
                                         λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                                         λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                                         λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                                        (h1
                                           by (refl_equal . .)
eq T (THead (Bind b) u0 t0) (THead (Bind b) u0 t0)
                                        end of h1
                                        (h2
                                           by (refl_equal . .)

                                              eq
                                                T
                                                THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                                THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                        end of h2
                                        by (ex6_6_intro . . . . . . . . . . . . . . . . . . H1 h1 h2 H13 H4 H6)
                                        we proved 
                                           ex6_6
                                             B
                                             T
                                             T
                                             T
                                             T
                                             T
                                             λb0:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b0 Abst)
                                             λb0:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T (THead (Bind b) u0 t0) (THead (Bind b0) y1 z1)
                                             λb0:B
                                               .λ:T
                                                 .λ:T
                                                   .λu3:T
                                                     .λv3:T
                                                       .λt3:T
                                                         .eq
                                                           T
                                                           THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                                           THead (Bind b0) v3 (THead (Flat Appl) (lift (S OO u3) t3)
                                             λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                                             λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                                             λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                                        by (or3_intro2 . . . previous)

                                           or3
                                             ex3_2
                                               T
                                               T
                                               λu3:T
                                                 .λt3:T
                                                   .eq
                                                     T
                                                     THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                                     THead (Flat Appl) u3 t3
                                               λu3:T.λ:T.pr0 u1 u3
                                               λ:T.λt3:T.pr0 (THead (Bind b) u0 t0) t3
                                             ex4_4
                                               T
                                               T
                                               T
                                               T
                                               λy1:T.λz1:T.λ:T.λ:T.eq T (THead (Bind b) u0 t0) (THead (Bind Abst) y1 z1)
                                               λ:T
                                                 .λ:T
                                                   .λu3:T
                                                     .λt3:T
                                                       .eq
                                                         T
                                                         THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                                         THead (Bind Abbr) u3 t3
                                               λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                                               λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                                             ex6_6
                                               B
                                               T
                                               T
                                               T
                                               T
                                               T
                                               λb0:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b0 Abst)
                                               λb0:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T (THead (Bind b) u0 t0) (THead (Bind b0) y1 z1)
                                               λb0:B
                                                 .λ:T
                                                   .λ:T
                                                     .λu3:T
                                                       .λv3:T
                                                         .λt3:T
                                                           .eq
                                                             T
                                                             THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                                             THead (Bind b0) v3 (THead (Flat Appl) (lift (S OO u3) t3)
                                               λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                                               λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                               we proved 
                                  or3
                                    ex3_2
                                      T
                                      T
                                      λu3:T
                                        .λt3:T
                                          .eq
                                            T
                                            THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                            THead (Flat Appl) u3 t3
                                      λu3:T.λ:T.pr0 u1 u3
                                      λ:T.λt3:T.pr0 t1 t3
                                    ex4_4
                                      T
                                      T
                                      T
                                      T
                                      λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                      λ:T
                                        .λ:T
                                          .λu3:T
                                            .λt3:T
                                              .eq
                                                T
                                                THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                                THead (Bind Abbr) u3 t3
                                      λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                                      λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                                    ex6_6
                                      B
                                      T
                                      T
                                      T
                                      T
                                      T
                                      λb0:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b0 Abst)
                                      λb0:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b0) y1 z1)
                                      λb0:B
                                        .λ:T
                                          .λ:T
                                            .λu3:T
                                              .λv3:T
                                                .λt3:T
                                                  .eq
                                                    T
                                                    THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                                    THead (Bind b0) v3 (THead (Flat Appl) (lift (S OO u3) t3)
                                      λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                                      λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                                      λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3

                               eq T v1 u1
                                 (or3
                                      ex3_2
                                        T
                                        T
                                        λu3:T
                                          .λt3:T
                                            .eq
                                              T
                                              THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                              THead (Flat Appl) u3 t3
                                        λu3:T.λ:T.pr0 u1 u3
                                        λ:T.λt3:T.pr0 t1 t3
                                      ex4_4
                                        T
                                        T
                                        T
                                        T
                                        λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                        λ:T
                                          .λ:T
                                            .λu3:T
                                              .λt3:T
                                                .eq
                                                  T
                                                  THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                                  THead (Bind Abbr) u3 t3
                                        λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                                        λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                                      ex6_6
                                        B
                                        T
                                        T
                                        T
                                        T
                                        T
                                        λb0:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b0 Abst)
                                        λb0:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b0) y1 z1)
                                        λb0:B
                                          .λ:T
                                            .λ:T
                                              .λu3:T
                                                .λv3:T
                                                  .λt3:T
                                                    .eq
                                                      T
                                                      THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                                      THead (Bind b0) v3 (THead (Flat Appl) (lift (S OO u3) t3)
                                        λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                                        λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                                        λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3)
                         end of h1
                         (h2
                            consider H9
                            we proved 
                               eq
                                 T
                                 <λ:T.T>
                                   CASE THead (Flat Appl) v1 (THead (Bind b) u0 t0) OF
                                     TSort v1
                                   | TLRef v1
                                   | THead  t t
                                 <λ:T.T> CASE THead (Flat Appl) u1 t1 OF TSort v1 | TLRef v1 | THead  t t
eq T v1 u1
                         end of h2
                         by (h1 h2)
                         we proved 
                            or3
                              ex3_2
                                T
                                T
                                λu3:T
                                  .λt3:T
                                    .eq
                                      T
                                      THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                      THead (Flat Appl) u3 t3
                                λu3:T.λ:T.pr0 u1 u3
                                λ:T.λt3:T.pr0 t1 t3
                              ex4_4
                                T
                                T
                                T
                                T
                                λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                λ:T
                                  .λ:T
                                    .λu3:T
                                      .λt3:T
                                        .eq
                                          T
                                          THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                          THead (Bind Abbr) u3 t3
                                λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                                λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                              ex6_6
                                B
                                T
                                T
                                T
                                T
                                T
                                λb0:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b0 Abst)
                                λb0:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b0) y1 z1)
                                λb0:B
                                  .λ:T
                                    .λ:T
                                      .λu3:T
                                        .λv3:T
                                          .λt3:T
                                            .eq
                                              T
                                              THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                              THead (Bind b0) v3 (THead (Flat Appl) (lift (S OO u3) t3)
                                λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                                λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                                λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3

                         H8:eq
                                    T
                                    THead (Flat Appl) v1 (THead (Bind b) u0 t0)
                                    THead (Flat Appl) u1 t1
                           .or3
                             ex3_2
                               T
                               T
                               λu3:T
                                 .λt3:T
                                   .eq
                                     T
                                     THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                     THead (Flat Appl) u3 t3
                               λu3:T.λ:T.pr0 u1 u3
                               λ:T.λt3:T.pr0 t1 t3
                             ex4_4
                               T
                               T
                               T
                               T
                               λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                               λ:T
                                 .λ:T
                                   .λu3:T
                                     .λt3:T
                                       .eq
                                         T
                                         THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                         THead (Bind Abbr) u3 t3
                               λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                               λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                             ex6_6
                               B
                               T
                               T
                               T
                               T
                               T
                               λb0:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b0 Abst)
                               λb0:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b0) y1 z1)
                               λb0:B
                                 .λ:T
                                   .λ:T
                                     .λu3:T
                                       .λv3:T
                                         .λt3:T
                                           .eq
                                             T
                                             THead (Bind b) u2 (THead (Flat Appl) (lift (S OO v2) t2)
                                             THead (Bind b0) v3 (THead (Flat Appl) (lift (S OO u3) t3)
                               λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                               λ:B.λy1:T.λ:T.λ:T.λv3:T.λ:T.pr0 y1 v3
                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                case pr0_delta : u0:T u2:T :pr0 u0 u2 t0:T t2:T :pr0 t0 t2 w:T :subst0 O u2 t2 w 
                   the thesis becomes 
                   H6:eq T (THead (Bind Abbr) u0 t0) (THead (Flat Appl) u1 t1)
                     .or3
                       ex3_2
                         T
                         T
                         λu3:T.λt3:T.eq T (THead (Bind Abbr) u2 w) (THead (Flat Appl) u3 t3)
                         λu3:T.λ:T.pr0 u1 u3
                         λ:T.λt3:T.pr0 t1 t3
                       ex4_4
                         T
                         T
                         T
                         T
                         λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                         λ:T.λ:T.λu3:T.λt3:T.eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u3 t3)
                         λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                         λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                       ex6_6
                         B
                         T
                         T
                         T
                         T
                         T
                         λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                         λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                         λb:B
                           .λ:T
                             .λ:T
                               .λu3:T
                                 .λv2:T
                                   .λt3:T
                                     .eq
                                       T
                                       THead (Bind Abbr) u2 w
                                       THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u3) t3)
                         λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                         λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                         λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                   () by induction hypothesis we know 
                      eq T u0 (THead (Flat Appl) u1 t1)
                        (or3
                             ex3_2 T T λu3:T.λt2:T.eq T u2 (THead (Flat Appl) u3 t2) λu3:T.λ:T.pr0 u1 u3 λ:T.λt2:T.pr0 t1 t2
                             ex4_4
                               T
                               T
                               T
                               T
                               λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                               λ:T.λ:T.λu3:T.λt2:T.eq T u2 (THead (Bind Abbr) u3 t2)
                               λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                               λ:T.λz1:T.λ:T.λt2:T.pr0 z1 t2
                             ex6_6
                               B
                               T
                               T
                               T
                               T
                               T
                               λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                               λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                               λb:B
                                 .λ:T
                                   .λ:T
                                     .λu3:T
                                       .λv2:T
                                         .λt2:T.eq T u2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u3) t2))
                               λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                               λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt2:T.pr0 z1 t2)
                   () by induction hypothesis we know 
                      eq T t0 (THead (Flat Appl) u1 t1)
                        (or3
                             ex3_2 T T λu3:T.λt3:T.eq T t2 (THead (Flat Appl) u3 t3) λu3:T.λ:T.pr0 u1 u3 λ:T.λt3:T.pr0 t1 t3
                             ex4_4
                               T
                               T
                               T
                               T
                               λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                               λ:T.λ:T.λu3:T.λt3:T.eq T t2 (THead (Bind Abbr) u3 t3)
                               λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                               λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                             ex6_6
                               B
                               T
                               T
                               T
                               T
                               T
                               λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                               λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                               λb:B
                                 .λ:T
                                   .λ:T
                                     .λu3:T
                                       .λv2:T
                                         .λt3:T.eq T t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u3) t3))
                               λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                               λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3)
                      suppose H6eq T (THead (Bind Abbr) u0 t0) (THead (Flat Appl) u1 t1)
                         (H7
                            we proceed by induction on H6 to prove 
                               <λ:T.Prop>
                                 CASE THead (Flat Appl) u1 t1 OF
                                   TSort False
                                 | TLRef False
                                 | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead (Bind Abbr) u0 t0 OF
                                      TSort False
                                    | TLRef False
                                    | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead (Bind Abbr) u0 t0 OF
                                            TSort False
                                          | TLRef False
                                          | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False

                               <λ:T.Prop>
                                 CASE THead (Flat Appl) u1 t1 OF
                                   TSort False
                                 | TLRef False
                                 | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                         end of H7
                         consider H7
                         we proved 
                            <λ:T.Prop>
                              CASE THead (Flat Appl) u1 t1 OF
                                TSort False
                              | TLRef False
                              | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove 
                            or3
                              ex3_2
                                T
                                T
                                λu3:T.λt3:T.eq T (THead (Bind Abbr) u2 w) (THead (Flat Appl) u3 t3)
                                λu3:T.λ:T.pr0 u1 u3
                                λ:T.λt3:T.pr0 t1 t3
                              ex4_4
                                T
                                T
                                T
                                T
                                λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                λ:T.λ:T.λu3:T.λt3:T.eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u3 t3)
                                λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                                λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                              ex6_6
                                B
                                T
                                T
                                T
                                T
                                T
                                λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                                λb:B
                                  .λ:T
                                    .λ:T
                                      .λu3:T
                                        .λv2:T
                                          .λt3:T
                                            .eq
                                              T
                                              THead (Bind Abbr) u2 w
                                              THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u3) t3)
                                λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                                λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                                λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                         we proved 
                            or3
                              ex3_2
                                T
                                T
                                λu3:T.λt3:T.eq T (THead (Bind Abbr) u2 w) (THead (Flat Appl) u3 t3)
                                λu3:T.λ:T.pr0 u1 u3
                                λ:T.λt3:T.pr0 t1 t3
                              ex4_4
                                T
                                T
                                T
                                T
                                λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                λ:T.λ:T.λu3:T.λt3:T.eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u3 t3)
                                λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                                λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                              ex6_6
                                B
                                T
                                T
                                T
                                T
                                T
                                λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                                λb:B
                                  .λ:T
                                    .λ:T
                                      .λu3:T
                                        .λv2:T
                                          .λt3:T
                                            .eq
                                              T
                                              THead (Bind Abbr) u2 w
                                              THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u3) t3)
                                λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                                λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                                λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3

                         H6:eq T (THead (Bind Abbr) u0 t0) (THead (Flat Appl) u1 t1)
                           .or3
                             ex3_2
                               T
                               T
                               λu3:T.λt3:T.eq T (THead (Bind Abbr) u2 w) (THead (Flat Appl) u3 t3)
                               λu3:T.λ:T.pr0 u1 u3
                               λ:T.λt3:T.pr0 t1 t3
                             ex4_4
                               T
                               T
                               T
                               T
                               λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                               λ:T.λ:T.λu3:T.λt3:T.eq T (THead (Bind Abbr) u2 w) (THead (Bind Abbr) u3 t3)
                               λ:T.λ:T.λu3:T.λ:T.pr0 u1 u3
                               λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                             ex6_6
                               B
                               T
                               T
                               T
                               T
                               T
                               λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                               λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                               λb:B
                                 .λ:T
                                   .λ:T
                                     .λu3:T
                                       .λv2:T
                                         .λt3:T
                                           .eq
                                             T
                                             THead (Bind Abbr) u2 w
                                             THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u3) t3)
                               λ:B.λ:T.λ:T.λu3:T.λ:T.λ:T.pr0 u1 u3
                               λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                case pr0_zeta : b:B :not (eq B b Abst) t0:T t2:T :pr0 t0 t2 u:T 
                   the thesis becomes 
                   H4:eq T (THead (Bind b) u (lift (S OO t0)) (THead (Flat Appl) u1 t1)
                     .or3
                       ex3_2 T T λu2:T.λt3:T.eq T t2 (THead (Flat Appl) u2 t3) λu2:T.λ:T.pr0 u1 u2 λ:T.λt3:T.pr0 t1 t3
                       ex4_4
                         T
                         T
                         T
                         T
                         λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                         λ:T.λ:T.λu2:T.λt3:T.eq T t2 (THead (Bind Abbr) u2 t3)
                         λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                         λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                       ex6_6
                         B
                         T
                         T
                         T
                         T
                         T
                         λb0:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b0 Abst)
                         λb0:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b0) y1 z1)
                         λb0:B
                           .λ:T
                             .λ:T
                               .λu2:T
                                 .λv2:T.λt3:T.eq T t2 (THead (Bind b0) v2 (THead (Flat Appl) (lift (S OO u2) t3))
                         λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                         λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                         λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                   () by induction hypothesis we know 
                      eq T t0 (THead (Flat Appl) u1 t1)
                        (or3
                             ex3_2 T T λu2:T.λt3:T.eq T t2 (THead (Flat Appl) u2 t3) λu2:T.λ:T.pr0 u1 u2 λ:T.λt3:T.pr0 t1 t3
                             ex4_4
                               T
                               T
                               T
                               T
                               λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                               λ:T.λ:T.λu2:T.λt3:T.eq T t2 (THead (Bind Abbr) u2 t3)
                               λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                               λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                             ex6_6
                               B
                               T
                               T
                               T
                               T
                               T
                               λb0:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b0 Abst)
                               λb0:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b0) y1 z1)
                               λb0:B
                                 .λ:T
                                   .λ:T
                                     .λu2:T
                                       .λv2:T.λt3:T.eq T t2 (THead (Bind b0) v2 (THead (Flat Appl) (lift (S OO u2) t3))
                               λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                               λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3)
                      suppose H4
                         eq T (THead (Bind b) u (lift (S OO t0)) (THead (Flat Appl) u1 t1)
                         (H5
                            we proceed by induction on H4 to prove 
                               <λ:T.Prop>
                                 CASE THead (Flat Appl) u1 t1 OF
                                   TSort False
                                 | TLRef False
                                 | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead (Bind b) u (lift (S OO t0) OF
                                      TSort False
                                    | TLRef False
                                    | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead (Bind b) u (lift (S OO t0) OF
                                            TSort False
                                          | TLRef False
                                          | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False

                               <λ:T.Prop>
                                 CASE THead (Flat Appl) u1 t1 OF
                                   TSort False
                                 | TLRef False
                                 | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                         end of H5
                         consider H5
                         we proved 
                            <λ:T.Prop>
                              CASE THead (Flat Appl) u1 t1 OF
                                TSort False
                              | TLRef False
                              | THead k  <λ:K.Prop> CASE k OF Bind True | Flat False
                         that is equivalent to False
                         we proceed by induction on the previous result to prove 
                            or3
                              ex3_2 T T λu2:T.λt3:T.eq T t2 (THead (Flat Appl) u2 t3) λu2:T.λ:T.pr0 u1 u2 λ:T.λt3:T.pr0 t1 t3
                              ex4_4
                                T
                                T
                                T
                                T
                                λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                λ:T.λ:T.λu2:T.λt3:T.eq T t2 (THead (Bind Abbr) u2 t3)
                                λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                                λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                              ex6_6
                                B
                                T
                                T
                                T
                                T
                                T
                                λb0:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b0 Abst)
                                λb0:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b0) y1 z1)
                                λb0:B
                                  .λ:T
                                    .λ:T
                                      .λu2:T
                                        .λv2:T.λt3:T.eq T t2 (THead (Bind b0) v2 (THead (Flat Appl) (lift (S OO u2) t3))
                                λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                                λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                                λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                         we proved 
                            or3
                              ex3_2 T T λu2:T.λt3:T.eq T t2 (THead (Flat Appl) u2 t3) λu2:T.λ:T.pr0 u1 u2 λ:T.λt3:T.pr0 t1 t3
                              ex4_4
                                T
                                T
                                T
                                T
                                λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                λ:T.λ:T.λu2:T.λt3:T.eq T t2 (THead (Bind Abbr) u2 t3)
                                λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                                λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                              ex6_6
                                B
                                T
                                T
                                T
                                T
                                T
                                λb0:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b0 Abst)
                                λb0:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b0) y1 z1)
                                λb0:B
                                  .λ:T
                                    .λ:T
                                      .λu2:T
                                        .λv2:T.λt3:T.eq T t2 (THead (Bind b0) v2 (THead (Flat Appl) (lift (S OO u2) t3))
                                λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                                λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                                λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3

                         H4:eq T (THead (Bind b) u (lift (S OO t0)) (THead (Flat Appl) u1 t1)
                           .or3
                             ex3_2 T T λu2:T.λt3:T.eq T t2 (THead (Flat Appl) u2 t3) λu2:T.λ:T.pr0 u1 u2 λ:T.λt3:T.pr0 t1 t3
                             ex4_4
                               T
                               T
                               T
                               T
                               λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                               λ:T.λ:T.λu2:T.λt3:T.eq T t2 (THead (Bind Abbr) u2 t3)
                               λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                               λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                             ex6_6
                               B
                               T
                               T
                               T
                               T
                               T
                               λb0:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b0 Abst)
                               λb0:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b0) y1 z1)
                               λb0:B
                                 .λ:T
                                   .λ:T
                                     .λu2:T
                                       .λv2:T.λt3:T.eq T t2 (THead (Bind b0) v2 (THead (Flat Appl) (lift (S OO u2) t3))
                               λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                               λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                case pr0_tau : t0:T t2:T :pr0 t0 t2 u:T 
                   the thesis becomes 
                   H3:eq T (THead (Flat Cast) u t0) (THead (Flat Appl) u1 t1)
                     .or3
                       ex3_2 T T λu2:T.λt3:T.eq T t2 (THead (Flat Appl) u2 t3) λu2:T.λ:T.pr0 u1 u2 λ:T.λt3:T.pr0 t1 t3
                       ex4_4
                         T
                         T
                         T
                         T
                         λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                         λ:T.λ:T.λu2:T.λt3:T.eq T t2 (THead (Bind Abbr) u2 t3)
                         λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                         λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                       ex6_6
                         B
                         T
                         T
                         T
                         T
                         T
                         λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                         λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                         λb:B
                           .λ:T
                             .λ:T
                               .λu2:T
                                 .λv2:T
                                   .λt3:T.eq T t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u2) t3))
                         λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                         λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                         λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                   () by induction hypothesis we know 
                      eq T t0 (THead (Flat Appl) u1 t1)
                        (or3
                             ex3_2 T T λu2:T.λt3:T.eq T t2 (THead (Flat Appl) u2 t3) λu2:T.λ:T.pr0 u1 u2 λ:T.λt3:T.pr0 t1 t3
                             ex4_4
                               T
                               T
                               T
                               T
                               λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                               λ:T.λ:T.λu2:T.λt3:T.eq T t2 (THead (Bind Abbr) u2 t3)
                               λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                               λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                             ex6_6
                               B
                               T
                               T
                               T
                               T
                               T
                               λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                               λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                               λb:B
                                 .λ:T
                                   .λ:T
                                     .λu2:T
                                       .λv2:T
                                         .λt3:T.eq T t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u2) t3))
                               λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                               λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3)
                      suppose H3eq T (THead (Flat Cast) u t0) (THead (Flat Appl) u1 t1)
                         (H4
                            we proceed by induction on H3 to prove 
                               <λ:T.Prop>
                                 CASE THead (Flat Appl) u1 t1 OF
                                   TSort False
                                 | TLRef False
                                 | THead k  
                                       <λ:K.Prop>
                                         CASE k OF
                                           Bind False
                                         | Flat f<λ:F.Prop> CASE f OF ApplFalse | CastTrue
                               case refl_equal : 
                                  the thesis becomes 
                                  <λ:T.Prop>
                                    CASE THead (Flat Cast) u t0 OF
                                      TSort False
                                    | TLRef False
                                    | THead k  
                                          <λ:K.Prop>
                                            CASE k OF
                                              Bind False
                                            | Flat f<λ:F.Prop> CASE f OF ApplFalse | CastTrue
                                     consider I
                                     we proved True

                                        <λ:T.Prop>
                                          CASE THead (Flat Cast) u t0 OF
                                            TSort False
                                          | TLRef False
                                          | THead k  
                                                <λ:K.Prop>
                                                  CASE k OF
                                                    Bind False
                                                  | Flat f<λ:F.Prop> CASE f OF ApplFalse | CastTrue

                               <λ:T.Prop>
                                 CASE THead (Flat Appl) u1 t1 OF
                                   TSort False
                                 | TLRef False
                                 | THead k  
                                       <λ:K.Prop>
                                         CASE k OF
                                           Bind False
                                         | Flat f<λ:F.Prop> CASE f OF ApplFalse | CastTrue
                         end of H4
                         consider H4
                         we proved 
                            <λ:T.Prop>
                              CASE THead (Flat Appl) u1 t1 OF
                                TSort False
                              | TLRef False
                              | THead k  
                                    <λ:K.Prop>
                                      CASE k OF
                                        Bind False
                                      | Flat f<λ:F.Prop> CASE f OF ApplFalse | CastTrue
                         that is equivalent to False
                         we proceed by induction on the previous result to prove 
                            or3
                              ex3_2 T T λu2:T.λt3:T.eq T t2 (THead (Flat Appl) u2 t3) λu2:T.λ:T.pr0 u1 u2 λ:T.λt3:T.pr0 t1 t3
                              ex4_4
                                T
                                T
                                T
                                T
                                λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                λ:T.λ:T.λu2:T.λt3:T.eq T t2 (THead (Bind Abbr) u2 t3)
                                λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                                λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                              ex6_6
                                B
                                T
                                T
                                T
                                T
                                T
                                λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                                λb:B
                                  .λ:T
                                    .λ:T
                                      .λu2:T
                                        .λv2:T
                                          .λt3:T.eq T t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u2) t3))
                                λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                                λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                                λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
                         we proved 
                            or3
                              ex3_2 T T λu2:T.λt3:T.eq T t2 (THead (Flat Appl) u2 t3) λu2:T.λ:T.pr0 u1 u2 λ:T.λt3:T.pr0 t1 t3
                              ex4_4
                                T
                                T
                                T
                                T
                                λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                                λ:T.λ:T.λu2:T.λt3:T.eq T t2 (THead (Bind Abbr) u2 t3)
                                λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                                λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                              ex6_6
                                B
                                T
                                T
                                T
                                T
                                T
                                λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                                λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                                λb:B
                                  .λ:T
                                    .λ:T
                                      .λu2:T
                                        .λv2:T
                                          .λt3:T.eq T t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u2) t3))
                                λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                                λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                                λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3

                         H3:eq T (THead (Flat Cast) u t0) (THead (Flat Appl) u1 t1)
                           .or3
                             ex3_2 T T λu2:T.λt3:T.eq T t2 (THead (Flat Appl) u2 t3) λu2:T.λ:T.pr0 u1 u2 λ:T.λt3:T.pr0 t1 t3
                             ex4_4
                               T
                               T
                               T
                               T
                               λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                               λ:T.λ:T.λu2:T.λt3:T.eq T t2 (THead (Bind Abbr) u2 t3)
                               λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                               λ:T.λz1:T.λ:T.λt3:T.pr0 z1 t3
                             ex6_6
                               B
                               T
                               T
                               T
                               T
                               T
                               λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                               λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                               λb:B
                                 .λ:T
                                   .λ:T
                                     .λu2:T
                                       .λv2:T
                                         .λt3:T.eq T t2 (THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u2) t3))
                               λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                               λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                               λ:B.λ:T.λz1:T.λ:T.λ:T.λt3:T.pr0 z1 t3
             we proved 
                eq T y (THead (Flat Appl) u1 t1)
                  (or3
                       ex3_2 T T λu2:T.λt2:T.eq T x (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr0 u1 u2 λ:T.λt2:T.pr0 t1 t2
                       ex4_4
                         T
                         T
                         T
                         T
                         λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                         λ:T.λ:T.λu2:T.λt2:T.eq T x (THead (Bind Abbr) u2 t2)
                         λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                         λ:T.λz1:T.λ:T.λt2:T.pr0 z1 t2
                       ex6_6
                         B
                         T
                         T
                         T
                         T
                         T
                         λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                         λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                         λb:B
                           .λ:T
                             .λ:T
                               .λu2:T
                                 .λv2:T
                                   .λt2:T
                                     .eq T x (THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u2) t2))
                         λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                         λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                         λ:B.λ:T.λz1:T.λ:T.λ:T.λt2:T.pr0 z1 t2)
          we proved 
             y:T
               .pr0 y x
                 (eq T y (THead (Flat Appl) u1 t1)
                      (or3
                           ex3_2 T T λu2:T.λt2:T.eq T x (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr0 u1 u2 λ:T.λt2:T.pr0 t1 t2
                           ex4_4
                             T
                             T
                             T
                             T
                             λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                             λ:T.λ:T.λu2:T.λt2:T.eq T x (THead (Bind Abbr) u2 t2)
                             λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                             λ:T.λz1:T.λ:T.λt2:T.pr0 z1 t2
                           ex6_6
                             B
                             T
                             T
                             T
                             T
                             T
                             λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                             λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                             λb:B
                               .λ:T
                                 .λ:T
                                   .λu2:T
                                     .λv2:T
                                       .λt2:T
                                         .eq T x (THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u2) t2))
                             λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                             λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                             λ:B.λ:T.λz1:T.λ:T.λ:T.λt2:T.pr0 z1 t2))
          by (insert_eq . . . . previous H)
          we proved 
             or3
               ex3_2 T T λu2:T.λt2:T.eq T x (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr0 u1 u2 λ:T.λt2:T.pr0 t1 t2
               ex4_4
                 T
                 T
                 T
                 T
                 λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                 λ:T.λ:T.λu2:T.λt2:T.eq T x (THead (Bind Abbr) u2 t2)
                 λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                 λ:T.λz1:T.λ:T.λt2:T.pr0 z1 t2
               ex6_6
                 B
                 T
                 T
                 T
                 T
                 T
                 λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                 λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                 λb:B
                   .λ:T
                     .λ:T
                       .λu2:T
                         .λv2:T
                           .λt2:T
                             .eq T x (THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u2) t2))
                 λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                 λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                 λ:B.λ:T.λz1:T.λ:T.λ:T.λt2:T.pr0 z1 t2
       we proved 
          u1:T
            .t1:T
              .x:T
                .pr0 (THead (Flat Appl) u1 t1) x
                  (or3
                       ex3_2 T T λu2:T.λt2:T.eq T x (THead (Flat Appl) u2 t2) λu2:T.λ:T.pr0 u1 u2 λ:T.λt2:T.pr0 t1 t2
                       ex4_4
                         T
                         T
                         T
                         T
                         λy1:T.λz1:T.λ:T.λ:T.eq T t1 (THead (Bind Abst) y1 z1)
                         λ:T.λ:T.λu2:T.λt2:T.eq T x (THead (Bind Abbr) u2 t2)
                         λ:T.λ:T.λu2:T.λ:T.pr0 u1 u2
                         λ:T.λz1:T.λ:T.λt2:T.pr0 z1 t2
                       ex6_6
                         B
                         T
                         T
                         T
                         T
                         T
                         λb:B.λ:T.λ:T.λ:T.λ:T.λ:T.not (eq B b Abst)
                         λb:B.λy1:T.λz1:T.λ:T.λ:T.λ:T.eq T t1 (THead (Bind b) y1 z1)
                         λb:B
                           .λ:T
                             .λ:T
                               .λu2:T
                                 .λv2:T
                                   .λt2:T
                                     .eq T x (THead (Bind b) v2 (THead (Flat Appl) (lift (S OO u2) t2))
                         λ:B.λ:T.λ:T.λu2:T.λ:T.λ:T.pr0 u1 u2
                         λ:B.λy1:T.λ:T.λ:T.λv2:T.λ:T.pr0 y1 v2
                         λ:B.λ:T.λz1:T.λ:T.λ:T.λt2:T.pr0 z1 t2)