DEFINITION pc3_t()
TYPE =
∀t2:T.∀c:C.∀t1:T.(pc3 c t1 t2)→∀t3:T.(pc3 c t2 t3)→(pc3 c t1 t3)
BODY =
assume t2: T
assume c: C
assume t1: T
suppose H: pc3 c t1 t2
assume t3: T
suppose H0: pc3 c t2 t3
(H1) consider H0
consider H1
we proved pc3 c t2 t3
that is equivalent to ex2 T λt:T.pr3 c t2 t λt:T.pr3 c t3 t
we proceed by induction on the previous result to prove pc3 c t1 t3
case ex_intro2 : x:T H2:pr3 c t2 x H3:pr3 c t3 x ⇒
the thesis becomes pc3 c t1 t3
(H4) consider H
consider H4
we proved pc3 c t1 t2
that is equivalent to ex2 T λt:T.pr3 c t1 t λt:T.pr3 c t2 t
we proceed by induction on the previous result to prove pc3 c t1 t3
case ex_intro2 : x0:T H5:pr3 c t1 x0 H6:pr3 c t2 x0 ⇒
the thesis becomes pc3 c t1 t3
by (pr3_confluence . . . H6 . H2)
we proved ex2 T λt:T.pr3 c x0 t λt:T.pr3 c x t
we proceed by induction on the previous result to prove pc3 c t1 t3
case ex_intro2 : x1:T H7:pr3 c x0 x1 H8:pr3 c x x1 ⇒
the thesis becomes pc3 c t1 t3
(h1) by (pr3_t . . . H5 . H7) we proved pr3 c t1 x1
(h2) by (pr3_t . . . H3 . H8) we proved pr3 c t3 x1
by (pc3_pr3_t . . . h1 . h2)
pc3 c t1 t3
pc3 c t1 t3
pc3 c t1 t3
we proved pc3 c t1 t3
we proved ∀t2:T.∀c:C.∀t1:T.(pc3 c t1 t2)→∀t3:T.(pc3 c t2 t3)→(pc3 c t1 t3)