DEFINITION pc3_s()
TYPE =
∀c:C.∀t2:T.∀t1:T.(pc3 c t1 t2)→(pc3 c t2 t1)
BODY =
assume c: C
assume t2: T
assume t1: T
suppose H: pc3 c t1 t2
(H0) consider H
consider H0
we proved pc3 c t1 t2
that is equivalent to ex2 T λt:T.pr3 c t1 t λt:T.pr3 c t2 t
we proceed by induction on the previous result to prove pc3 c t2 t1
case ex_intro2 : x:T H1:pr3 c t1 x H2:pr3 c t2 x ⇒
the thesis becomes pc3 c t2 t1
by (ex_intro2 . . . . H2 H1)
we proved ex2 T λt:T.pr3 c t2 t λt:T.pr3 c t1 t
pc3 c t2 t1
we proved pc3 c t2 t1
we proved ∀c:C.∀t2:T.∀t1:T.(pc3 c t1 t2)→(pc3 c t2 t1)