DEFINITION pc3_pr2_u()
TYPE =
∀c:C.∀t2:T.∀t1:T.(pr2 c t1 t2)→∀t3:T.(pc3 c t2 t3)→(pc3 c t1 t3)
BODY =
assume c: C
assume t2: T
assume t1: T
suppose H: pr2 c t1 t2
assume t3: T
suppose H0: pc3 c t2 t3
(H1) consider H0
consider H1
we proved pc3 c t2 t3
that is equivalent to ex2 T λt:T.pr3 c t2 t λt:T.pr3 c t3 t
we proceed by induction on the previous result to prove pc3 c t1 t3
case ex_intro2 : x:T H2:pr3 c t2 x H3:pr3 c t3 x ⇒
the thesis becomes pc3 c t1 t3
by (pr3_sing . . . H . H2)
we proved pr3 c t1 x
by (ex_intro2 . . . . previous H3)
we proved ex2 T λt:T.pr3 c t1 t λt:T.pr3 c t3 t
pc3 c t1 t3
we proved pc3 c t1 t3
we proved ∀c:C.∀t2:T.∀t1:T.(pr2 c t1 t2)→∀t3:T.(pc3 c t2 t3)→(pc3 c t1 t3)