DEFINITION pc3_pr2_pr3_t()
TYPE =
∀c:C.∀u2:T.∀t1:T.∀t2:T.∀k:K.(pr3 (CHead c k u2) t1 t2)→∀u1:T.(pr2 c u2 u1)→(pc3 (CHead c k u1) t1 t2)
BODY =
assume c: C
assume u2: T
assume t1: T
assume t2: T
assume k: K
suppose H: pr3 (CHead c k u2) t1 t2
we proceed by induction on H to prove ∀u1:T.(pr2 c u2 u1)→(pc3 (CHead c k u1) t1 t2)
case pr3_refl : t:T ⇒
the thesis becomes ∀u1:T.(pr2 c u2 u1)→(pc3 (CHead c k u1) t t)
assume u1: T
suppose : pr2 c u2 u1
by (pc3_refl . .)
we proved pc3 (CHead c k u1) t t
∀u1:T.(pr2 c u2 u1)→(pc3 (CHead c k u1) t t)
case pr3_sing : t0:T t3:T H0:pr2 (CHead c k u2) t3 t0 t4:T :pr3 (CHead c k u2) t0 t4 ⇒
the thesis becomes ∀u1:T.∀H3:(pr2 c u2 u1).(pc3 (CHead c k u1) t3 t4)
(H2) by induction hypothesis we know ∀u1:T.(pr2 c u2 u1)→(pc3 (CHead c k u1) t0 t4)
assume u1: T
suppose H3: pr2 c u2 u1
(h1)
by (pc3_pr2_pr2_t . . . H3 . . . H0)
pc3 (CHead c k u1) t3 t0
end of h1
(h2) by (H2 . H3) we proved pc3 (CHead c k u1) t0 t4
by (pc3_t . . . h1 . h2)
we proved pc3 (CHead c k u1) t3 t4
∀u1:T.∀H3:(pr2 c u2 u1).(pc3 (CHead c k u1) t3 t4)
we proved ∀u1:T.(pr2 c u2 u1)→(pc3 (CHead c k u1) t1 t2)
we proved ∀c:C.∀u2:T.∀t1:T.∀t2:T.∀k:K.(pr3 (CHead c k u2) t1 t2)→∀u1:T.(pr2 c u2 u1)→(pc3 (CHead c k u1) t1 t2)