DEFINITION pc3_lift()
TYPE =
∀c:C
.∀e:C
.∀h:nat
.∀d:nat.(drop h d c e)→∀t1:T.∀t2:T.(pc3 e t1 t2)→(pc3 c (lift h d t1) (lift h d t2))
BODY =
assume c: C
assume e: C
assume h: nat
assume d: nat
suppose H: drop h d c e
assume t1: T
assume t2: T
suppose H0: pc3 e t1 t2
(H1) consider H0
consider H1
we proved pc3 e t1 t2
that is equivalent to ex2 T λt:T.pr3 e t1 t λt:T.pr3 e t2 t
we proceed by induction on the previous result to prove pc3 c (lift h d t1) (lift h d t2)
case ex_intro2 : x:T H2:pr3 e t1 x H3:pr3 e t2 x ⇒
the thesis becomes pc3 c (lift h d t1) (lift h d t2)
(h1)
by (pr3_lift . . . . H . . H2)
pr3 c (lift h d t1) (lift h d x)
end of h1
(h2)
by (pr3_lift . . . . H . . H3)
pr3 c (lift h d t2) (lift h d x)
end of h2
by (pc3_pr3_t . . . h1 . h2)
pc3 c (lift h d t1) (lift h d t2)
we proved pc3 c (lift h d t1) (lift h d t2)
we proved
∀c:C
.∀e:C
.∀h:nat
.∀d:nat.(drop h d c e)→∀t1:T.∀t2:T.(pc3 e t1 t2)→(pc3 c (lift h d t1) (lift h d t2))