DEFINITION pc3_head_12()
TYPE =
∀c:C
.∀u1:T.∀u2:T.(pc3 c u1 u2)→∀k:K.∀t1:T.∀t2:T.(pc3 (CHead c k u2) t1 t2)→(pc3 c (THead k u1 t1) (THead k u2 t2))
BODY =
assume c: C
assume u1: T
assume u2: T
suppose H: pc3 c u1 u2
assume k: K
assume t1: T
assume t2: T
suppose H0: pc3 (CHead c k u2) t1 t2
(h1)
by (pc3_head_1 . . . H . .)
pc3 c (THead k u1 t1) (THead k u2 t1)
end of h1
(h2)
by (pc3_head_2 . . . . . H0)
pc3 c (THead k u2 t1) (THead k u2 t2)
end of h2
by (pc3_t . . . h1 . h2)
we proved pc3 c (THead k u1 t1) (THead k u2 t2)
we proved
∀c:C
.∀u1:T.∀u2:T.(pc3 c u1 u2)→∀k:K.∀t1:T.∀t2:T.(pc3 (CHead c k u2) t1 t2)→(pc3 c (THead k u1 t1) (THead k u2 t2))