DEFINITION clear_pc3_trans()
TYPE =
∀c2:C.∀t1:T.∀t2:T.(pc3 c2 t1 t2)→∀c1:C.(clear c1 c2)→(pc3 c1 t1 t2)
BODY =
assume c2: C
assume t1: T
assume t2: T
suppose H: pc3 c2 t1 t2
assume c1: C
suppose H0: clear c1 c2
(H1) consider H
consider H1
we proved pc3 c2 t1 t2
that is equivalent to ex2 T λt:T.pr3 c2 t1 t λt:T.pr3 c2 t2 t
we proceed by induction on the previous result to prove pc3 c1 t1 t2
case ex_intro2 : x:T H2:pr3 c2 t1 x H3:pr3 c2 t2 x ⇒
the thesis becomes pc3 c1 t1 t2
(h1)
by (clear_pr3_trans . . . H2 . H0)
pr3 c1 t1 x
end of h1
(h2)
by (clear_pr3_trans . . . H3 . H0)
pr3 c1 t2 x
end of h2
by (ex_intro2 . . . . h1 h2)
we proved ex2 T λt:T.pr3 c1 t1 t λt:T.pr3 c1 t2 t
pc3 c1 t1 t2
we proved pc3 c1 t1 t2
we proved ∀c2:C.∀t1:T.∀t2:T.(pc3 c2 t1 t2)→∀c1:C.(clear c1 c2)→(pc3 c1 t1 t2)