DEFINITION pc3_nf2_unfold()
TYPE =
∀c:C.∀t1:T.∀t2:T.(pc3 c t1 t2)→(nf2 c t2)→(pr3 c t1 t2)
BODY =
assume c: C
assume t1: T
assume t2: T
suppose H: pc3 c t1 t2
suppose H0: nf2 c t2
(H1) consider H
consider H1
we proved pc3 c t1 t2
that is equivalent to ex2 T λt:T.pr3 c t1 t λt:T.pr3 c t2 t
we proceed by induction on the previous result to prove pr3 c t1 t2
case ex_intro2 : x:T H2:pr3 c t1 x H3:pr3 c t2 x ⇒
the thesis becomes pr3 c t1 t2
(H_y)
by (nf2_pr3_unfold . . . H3 H0)
eq T t2 x
end of H_y
(H4)
by (eq_ind_r . . . H2 . H_y)
pr3 c t1 t2
end of H4
consider H4
pr3 c t1 t2
we proved pr3 c t1 t2
we proved ∀c:C.∀t1:T.∀t2:T.(pc3 c t1 t2)→(nf2 c t2)→(pr3 c t1 t2)