DEFINITION pc3_nf2()
TYPE =
∀c:C.∀t1:T.∀t2:T.(pc3 c t1 t2)→(nf2 c t1)→(nf2 c t2)→(eq T t1 t2)
BODY =
assume c: C
assume t1: T
assume t2: T
suppose H: pc3 c t1 t2
suppose H0: nf2 c t1
suppose H1: nf2 c t2
(H2) consider H
consider H2
we proved pc3 c t1 t2
that is equivalent to ex2 T λt:T.pr3 c t1 t λt:T.pr3 c t2 t
we proceed by induction on the previous result to prove eq T t1 t2
case ex_intro2 : x:T H3:pr3 c t1 x H4:pr3 c t2 x ⇒
the thesis becomes eq T t1 t2
(H_y)
by (nf2_pr3_unfold . . . H3 H0)
eq T t1 x
end of H_y
(H5)
by (eq_ind_r . . . H4 . H_y)
pr3 c t2 t1
end of H5
(H_y0)
by (nf2_pr3_unfold . . . H5 H1)
eq T t2 t1
end of H_y0
by (refl_equal . .)
we proved eq T t1 t1
by (eq_ind_r . . . previous . H_y0)
eq T t1 t2
we proved eq T t1 t2
we proved ∀c:C.∀t1:T.∀t2:T.(pc3 c t1 t2)→(nf2 c t1)→(nf2 c t2)→(eq T t1 t2)