DEFINITION pc3_ind_left__pc3_left_sym()
TYPE =
∀c:C.∀t1:T.∀t2:T.(pc3_left c t1 t2)→(pc3_left c t2 t1)
BODY =
assume c: C
assume t1: T
assume t2: T
suppose H: pc3_left c t1 t2
we proceed by induction on H to prove pc3_left c t2 t1
case pc3_left_r : t:T ⇒
the thesis becomes pc3_left c t t
by (pc3_left_r . .)
pc3_left c t t
case pc3_left_ur : t0:T t3:T H0:pr2 c t0 t3 t4:T :pc3_left c t3 t4 ⇒
the thesis becomes pc3_left c t4 t0
(H2) by induction hypothesis we know pc3_left c t4 t3
by (pc3_left_r . .)
we proved pc3_left c t0 t0
by (pc3_left_ux . . . H0 . previous)
we proved pc3_left c t3 t0
by (pc3_ind_left__pc3_left_trans . . . H2 . previous)
pc3_left c t4 t0
case pc3_left_ux : t0:T t3:T H0:pr2 c t0 t3 t4:T :pc3_left c t0 t4 ⇒
the thesis becomes pc3_left c t4 t3
(H2) by induction hypothesis we know pc3_left c t4 t0
by (pc3_left_r . .)
we proved pc3_left c t3 t3
by (pc3_left_ur . . . H0 . previous)
we proved pc3_left c t0 t3
by (pc3_ind_left__pc3_left_trans . . . H2 . previous)
pc3_left c t4 t3
we proved pc3_left c t2 t1
we proved ∀c:C.∀t1:T.∀t2:T.(pc3_left c t1 t2)→(pc3_left c t2 t1)