DEFINITION pc3_ind_left__pc3_left_pr3()
TYPE =
∀c:C.∀t1:T.∀t2:T.(pr3 c t1 t2)→(pc3_left c t1 t2)
BODY =
assume c: C
assume t1: T
assume t2: T
suppose H: pr3 c t1 t2
we proceed by induction on H to prove pc3_left c t1 t2
case pr3_refl : t:T ⇒
the thesis becomes pc3_left c t t
by (pc3_left_r . .)
pc3_left c t t
case pr3_sing : t0:T t3:T H0:pr2 c t3 t0 t4:T :pr3 c t0 t4 ⇒
the thesis becomes pc3_left c t3 t4
(H2) by induction hypothesis we know pc3_left c t0 t4
by (pc3_left_ur . . . H0 . H2)
pc3_left c t3 t4
we proved pc3_left c t1 t2
we proved ∀c:C.∀t1:T.∀t2:T.(pr3 c t1 t2)→(pc3_left c t1 t2)