DEFINITION pc3_ind_left__pc3_left_pc3()
TYPE =
∀c:C.∀t1:T.∀t2:T.(pc3 c t1 t2)→(pc3_left c t1 t2)
BODY =
assume c: C
assume t1: T
assume t2: T
suppose H: pc3 c t1 t2
(H0) consider H
consider H0
we proved pc3 c t1 t2
that is equivalent to ex2 T λt:T.pr3 c t1 t λt:T.pr3 c t2 t
we proceed by induction on the previous result to prove pc3_left c t1 t2
case ex_intro2 : x:T H1:pr3 c t1 x H2:pr3 c t2 x ⇒
the thesis becomes pc3_left c t1 t2
(h1)
by (pc3_ind_left__pc3_left_pr3 . . . H1)
pc3_left c t1 x
end of h1
(h2)
by (pc3_ind_left__pc3_left_pr3 . . . H2)
we proved pc3_left c t2 x
by (pc3_ind_left__pc3_left_sym . . . previous)
pc3_left c x t2
end of h2
by (pc3_ind_left__pc3_left_trans . . . h1 . h2)
pc3_left c t1 t2
we proved pc3_left c t1 t2
we proved ∀c:C.∀t1:T.∀t2:T.(pc3 c t1 t2)→(pc3_left c t1 t2)