DEFINITION pc3_ind_left()
TYPE =
∀c:C
.∀P:T→T→Prop
.∀t:T.(P t t)
→(∀t1:T.∀t2:T.(pr2 c t1 t2)→∀t3:T.(pc3 c t2 t3)→(P t2 t3)→(P t1 t3)
→(∀t1:T.∀t2:T.(pr2 c t1 t2)→∀t3:T.(pc3 c t1 t3)→(P t1 t3)→(P t2 t3)
→∀t:T.∀t0:T.(pc3 c t t0)→(P t t0)))
BODY =
assume c: C
assume P: T→T→Prop
suppose H: ∀t:T.(P t t)
suppose H0: ∀t1:T.∀t2:T.(pr2 c t1 t2)→∀t3:T.(pc3 c t2 t3)→(P t2 t3)→(P t1 t3)
suppose H1: ∀t1:T.∀t2:T.(pr2 c t1 t2)→∀t3:T.(pc3 c t1 t3)→(P t1 t3)→(P t2 t3)
assume t: T
assume t0: T
suppose H2: pc3 c t t0
by (pc3_ind_left__pc3_left_pc3 . . . H2)
we proved pc3_left c t t0
we proceed by induction on the previous result to prove P t t0
case pc3_left_r ⇒
the thesis becomes the hypothesis H
case pc3_left_ur : t1:T t2:T H3:pr2 c t1 t2 t3:T H4:pc3_left c t2 t3 ⇒
the thesis becomes P t1 t3
(H5) by induction hypothesis we know P t2 t3
by (pc3_ind_left__pc3_pc3_left . . . H4)
we proved pc3 c t2 t3
by (H0 . . H3 . previous H5)
P t1 t3
case pc3_left_ux : t1:T t2:T H3:pr2 c t1 t2 t3:T H4:pc3_left c t1 t3 ⇒
the thesis becomes P t2 t3
(H5) by induction hypothesis we know P t1 t3
by (pc3_ind_left__pc3_pc3_left . . . H4)
we proved pc3 c t1 t3
by (H1 . . H3 . previous H5)
P t2 t3
we proved P t t0
we proved
∀c:C
.∀P:T→T→Prop
.∀t:T.(P t t)
→(∀t1:T.∀t2:T.(pr2 c t1 t2)→∀t3:T.(pc3 c t2 t3)→(P t2 t3)→(P t1 t3)
→(∀t1:T.∀t2:T.(pr2 c t1 t2)→∀t3:T.(pc3 c t1 t3)→(P t1 t3)→(P t2 t3)
→∀t:T.∀t0:T.(pc3 c t t0)→(P t t0)))