DEFINITION pc3_ind_left()
TYPE =
       c:C
         .P:TTProp
           .t:T.(P t t)
             (t1:T.t2:T.(pr2 c t1 t2)t3:T.(pc3 c t2 t3)(P t2 t3)(P t1 t3)
                  (t1:T.t2:T.(pr2 c t1 t2)t3:T.(pc3 c t1 t3)(P t1 t3)(P t2 t3)
                       t:T.t0:T.(pc3 c t t0)(P t t0)))
BODY =
        assume cC
        assume PTTProp
        suppose Ht:T.(P t t)
        suppose H0t1:T.t2:T.(pr2 c t1 t2)t3:T.(pc3 c t2 t3)(P t2 t3)(P t1 t3)
        suppose H1t1:T.t2:T.(pr2 c t1 t2)t3:T.(pc3 c t1 t3)(P t1 t3)(P t2 t3)
        assume tT
        assume t0T
        suppose H2pc3 c t t0
          by (pc3_ind_left__pc3_left_pc3 . . . H2)
          we proved pc3_left c t t0
          we proceed by induction on the previous result to prove P t t0
             case pc3_left_r 
                the thesis becomes the hypothesis H
             case pc3_left_ur : t1:T t2:T H3:pr2 c t1 t2 t3:T H4:pc3_left c t2 t3 
                the thesis becomes P t1 t3
                (H5) by induction hypothesis we know P t2 t3
                   by (pc3_ind_left__pc3_pc3_left . . . H4)
                   we proved pc3 c t2 t3
                   by (H0 . . H3 . previous H5)
P t1 t3
             case pc3_left_ux : t1:T t2:T H3:pr2 c t1 t2 t3:T H4:pc3_left c t1 t3 
                the thesis becomes P t2 t3
                (H5) by induction hypothesis we know P t1 t3
                   by (pc3_ind_left__pc3_pc3_left . . . H4)
                   we proved pc3 c t1 t3
                   by (H1 . . H3 . previous H5)
P t2 t3
          we proved P t t0
       we proved 
          c:C
            .P:TTProp
              .t:T.(P t t)
                (t1:T.t2:T.(pr2 c t1 t2)t3:T.(pc3 c t2 t3)(P t2 t3)(P t1 t3)
                     (t1:T.t2:T.(pr2 c t1 t2)t3:T.(pc3 c t1 t3)(P t1 t3)(P t2 t3)
                          t:T.t0:T.(pc3 c t t0)(P t t0)))