DEFINITION pc3_gen_sort()
TYPE =
∀c:C.∀m:nat.∀n:nat.(pc3 c (TSort m) (TSort n))→(eq nat m n)
BODY =
assume c: C
assume m: nat
assume n: nat
suppose H: pc3 c (TSort m) (TSort n)
(H0) consider H
consider H0
we proved pc3 c (TSort m) (TSort n)
that is equivalent to ex2 T λt:T.pr3 c (TSort m) t λt:T.pr3 c (TSort n) t
we proceed by induction on the previous result to prove eq nat m n
case ex_intro2 : x:T H1:pr3 c (TSort m) x H2:pr3 c (TSort n) x ⇒
the thesis becomes eq nat m n
(H3)
by (pr3_gen_sort . . . H1)
we proved eq T x (TSort m)
we proceed by induction on the previous result to prove eq T (TSort m) (TSort n)
case refl_equal : ⇒
the thesis becomes eq T x (TSort n)
by (pr3_gen_sort . . . H2)
eq T x (TSort n)
eq T (TSort m) (TSort n)
end of H3
(H4)
by (f_equal . . . . . H3)
we proved
eq
nat
<λ:T.nat> CASE TSort m OF TSort n0⇒n0 | TLRef ⇒m | THead ⇒m
<λ:T.nat> CASE TSort n OF TSort n0⇒n0 | TLRef ⇒m | THead ⇒m
eq
nat
λe:T.<λ:T.nat> CASE e OF TSort n0⇒n0 | TLRef ⇒m | THead ⇒m (TSort m)
λe:T.<λ:T.nat> CASE e OF TSort n0⇒n0 | TLRef ⇒m | THead ⇒m (TSort n)
end of H4
consider H4
we proved
eq
nat
<λ:T.nat> CASE TSort m OF TSort n0⇒n0 | TLRef ⇒m | THead ⇒m
<λ:T.nat> CASE TSort n OF TSort n0⇒n0 | TLRef ⇒m | THead ⇒m
eq nat m n
we proved eq nat m n
we proved ∀c:C.∀m:nat.∀n:nat.(pc3 c (TSort m) (TSort n))→(eq nat m n)