DEFINITION pc3_gen_lift_abst()
TYPE =
       c:C
         .t:T
           .t2:T
             .u2:T
               .h:nat
                 .d:nat
                   .pc3 c (lift h d t) (THead (Bind Abst) u2 t2)
                     e:C
                          .drop h d c e
                            (ex3_2
                                 T
                                 T
                                 λu1:T.λt1:T.pr3 e t (THead (Bind Abst) u1 t1)
                                 λu1:T.λ:T.pr3 c u2 (lift h d u1)
                                 λ:T.λt1:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t2 (lift h (S d) t1)))
BODY =
        assume cC
        assume tT
        assume t2T
        assume u2T
        assume hnat
        assume dnat
        suppose Hpc3 c (lift h d t) (THead (Bind Abst) u2 t2)
        assume eC
        suppose H0drop h d c e
          (H1consider H
          consider H1
          we proved pc3 c (lift h d t) (THead (Bind Abst) u2 t2)
          that is equivalent to ex2 T λt0:T.pr3 c (lift h d t) t0 λt0:T.pr3 c (THead (Bind Abst) u2 t2) t0
          we proceed by induction on the previous result to prove 
             ex3_2
               T
               T
               λu1:T.λt1:T.pr3 e t (THead (Bind Abst) u1 t1)
               λu1:T.λ:T.pr3 c u2 (lift h d u1)
               λ:T.λt1:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t2 (lift h (S d) t1))
             case ex_intro2 : x:T H2:pr3 c (lift h d t) x H3:pr3 c (THead (Bind Abst) u2 t2) x 
                the thesis becomes 
                ex3_2
                  T
                  T
                  λu1:T.λt1:T.pr3 e t (THead (Bind Abst) u1 t1)
                  λu1:T.λ:T.pr3 c u2 (lift h d u1)
                  λ:T.λt1:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t2 (lift h (S d) t1))
                   (H4
                      by (pr3_gen_lift . . . . . H2 . H0)
ex2 T λt2:T.eq T x (lift h d t2) λt2:T.pr3 e t t2
                   end of H4
                   we proceed by induction on H4 to prove 
                      ex3_2
                        T
                        T
                        λu1:T.λt1:T.pr3 e t (THead (Bind Abst) u1 t1)
                        λu1:T.λ:T.pr3 c u2 (lift h d u1)
                        λ:T.λt1:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t2 (lift h (S d) t1))
                      case ex_intro2 : x0:T H5:eq T x (lift h d x0) H6:pr3 e t x0 
                         the thesis becomes 
                         ex3_2
                           T
                           T
                           λu1:T.λt1:T.pr3 e t (THead (Bind Abst) u1 t1)
                           λu1:T.λ:T.pr3 c u2 (lift h d u1)
                           λ:T.λt1:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t2 (lift h (S d) t1))
                            (H7
                               by (pr3_gen_abst . . . . H3)

                                  ex3_2
                                    T
                                    T
                                    λu2:T.λt2:T.eq T x (THead (Bind Abst) u2 t2)
                                    λu2:T.λ:T.pr3 c u2 u2
                                    λ:T.λt2:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t2 t2)
                            end of H7
                            we proceed by induction on H7 to prove 
                               ex3_2
                                 T
                                 T
                                 λu1:T.λt1:T.pr3 e t (THead (Bind Abst) u1 t1)
                                 λu1:T.λ:T.pr3 c u2 (lift h d u1)
                                 λ:T.λt1:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t2 (lift h (S d) t1))
                               case ex3_2_intro : x1:T x2:T H8:eq T x (THead (Bind Abst) x1 x2) H9:pr3 c u2 x1 H10:b:B.u:T.(pr3 (CHead c (Bind b) u) t2 x2) 
                                  the thesis becomes 
                                  ex3_2
                                    T
                                    T
                                    λu1:T.λt1:T.pr3 e t (THead (Bind Abst) u1 t1)
                                    λu1:T.λ:T.pr3 c u2 (lift h d u1)
                                    λ:T.λt1:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t2 (lift h (S d) t1))
                                     (H11
                                        we proceed by induction on H8 to prove eq T (THead (Bind Abst) x1 x2) (lift h d x0)
                                           case refl_equal : 
                                              the thesis becomes the hypothesis H5
eq T (THead (Bind Abst) x1 x2) (lift h d x0)
                                     end of H11
                                     by (lift_gen_bind . . . . . . H11)
                                     we proved 
                                        ex3_2
                                          T
                                          T
                                          λy:T.λz:T.eq T x0 (THead (Bind Abst) y z)
                                          λy:T.λ:T.eq T x1 (lift h d y)
                                          λ:T.λz:T.eq T x2 (lift h (S d) z)
                                     we proceed by induction on the previous result to prove 
                                        ex3_2
                                          T
                                          T
                                          λu1:T.λt1:T.pr3 e t (THead (Bind Abst) u1 t1)
                                          λu1:T.λ:T.pr3 c u2 (lift h d u1)
                                          λ:T.λt1:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t2 (lift h (S d) t1))
                                        case ex3_2_intro : x3:T x4:T H12:eq T x0 (THead (Bind Abst) x3 x4) H13:eq T x1 (lift h d x3) H14:eq T x2 (lift h (S d) x4) 
                                           the thesis becomes 
                                           ex3_2
                                             T
                                             T
                                             λu1:T.λt1:T.pr3 e t (THead (Bind Abst) u1 t1)
                                             λu1:T.λ:T.pr3 c u2 (lift h d u1)
                                             λ:T.λt1:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t2 (lift h (S d) t1))
                                              (H15
                                                 we proceed by induction on H14 to prove b:B.u:T.(pr3 (CHead c (Bind b) u) t2 (lift h (S d) x4))
                                                    case refl_equal : 
                                                       the thesis becomes the hypothesis H10
b:B.u:T.(pr3 (CHead c (Bind b) u) t2 (lift h (S d) x4))
                                              end of H15
                                              (H16
                                                 we proceed by induction on H13 to prove pr3 c u2 (lift h d x3)
                                                    case refl_equal : 
                                                       the thesis becomes the hypothesis H9
pr3 c u2 (lift h d x3)
                                              end of H16
                                              (H17
                                                 we proceed by induction on H12 to prove pr3 e t (THead (Bind Abst) x3 x4)
                                                    case refl_equal : 
                                                       the thesis becomes the hypothesis H6
pr3 e t (THead (Bind Abst) x3 x4)
                                              end of H17
                                              by (ex3_2_intro . . . . . . . H17 H16 H15)

                                                 ex3_2
                                                   T
                                                   T
                                                   λu1:T.λt1:T.pr3 e t (THead (Bind Abst) u1 t1)
                                                   λu1:T.λ:T.pr3 c u2 (lift h d u1)
                                                   λ:T.λt1:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t2 (lift h (S d) t1))

                                        ex3_2
                                          T
                                          T
                                          λu1:T.λt1:T.pr3 e t (THead (Bind Abst) u1 t1)
                                          λu1:T.λ:T.pr3 c u2 (lift h d u1)
                                          λ:T.λt1:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t2 (lift h (S d) t1))

                               ex3_2
                                 T
                                 T
                                 λu1:T.λt1:T.pr3 e t (THead (Bind Abst) u1 t1)
                                 λu1:T.λ:T.pr3 c u2 (lift h d u1)
                                 λ:T.λt1:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t2 (lift h (S d) t1))

                      ex3_2
                        T
                        T
                        λu1:T.λt1:T.pr3 e t (THead (Bind Abst) u1 t1)
                        λu1:T.λ:T.pr3 c u2 (lift h d u1)
                        λ:T.λt1:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t2 (lift h (S d) t1))
          we proved 
             ex3_2
               T
               T
               λu1:T.λt1:T.pr3 e t (THead (Bind Abst) u1 t1)
               λu1:T.λ:T.pr3 c u2 (lift h d u1)
               λ:T.λt1:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t2 (lift h (S d) t1))
       we proved 
          c:C
            .t:T
              .t2:T
                .u2:T
                  .h:nat
                    .d:nat
                      .pc3 c (lift h d t) (THead (Bind Abst) u2 t2)
                        e:C
                             .drop h d c e
                               (ex3_2
                                    T
                                    T
                                    λu1:T.λt1:T.pr3 e t (THead (Bind Abst) u1 t1)
                                    λu1:T.λ:T.pr3 c u2 (lift h d u1)
                                    λ:T.λt1:T.b:B.u:T.(pr3 (CHead c (Bind b) u) t2 (lift h (S d) t1)))