DEFINITION pc3_gen_abst_shift()
TYPE =
∀c:C
.∀u:T
.∀t1:T
.∀t2:T
.pc3 c (THead (Bind Abst) u t1) (THead (Bind Abst) u t2)
→pc3 (CHead c (Bind Abst) u) t1 t2
BODY =
assume c: C
assume u: T
assume t1: T
assume t2: T
suppose H: pc3 c (THead (Bind Abst) u t1) (THead (Bind Abst) u t2)
(H_x)
by (pc3_gen_abst . . . . . H)
land (pc3 c u u) ∀b:B.∀u:T.(pc3 (CHead c (Bind b) u) t1 t2)
end of H_x
(H0) consider H_x
we proceed by induction on H0 to prove pc3 (CHead c (Bind Abst) u) t1 t2
case conj : :pc3 c u u H2:∀b:B.∀u0:T.(pc3 (CHead c (Bind b) u0) t1 t2) ⇒
the thesis becomes pc3 (CHead c (Bind Abst) u) t1 t2
by (H2 . .)
pc3 (CHead c (Bind Abst) u) t1 t2
we proved pc3 (CHead c (Bind Abst) u) t1 t2
we proved
∀c:C
.∀u:T
.∀t1:T
.∀t2:T
.pc3 c (THead (Bind Abst) u t1) (THead (Bind Abst) u t2)
→pc3 (CHead c (Bind Abst) u) t1 t2