DEFINITION pc3_gen_abst()
TYPE =
       ∀c:C
         .∀u1:T
           .∀u2:T
             .∀t1:T
               .∀t2:T
                 .pc3 c (THead (Bind Abst) u1 t1) (THead (Bind Abst) u2 t2)
                   →land (pc3 c u1 u2) ∀b:B.∀u:T.(pc3 (CHead c (Bind b) u) t1 t2)
BODY =
        assume c: C
        assume u1: T
        assume u2: T
        assume t1: T
        assume t2: T
        suppose H: pc3 c (THead (Bind Abst) u1 t1) (THead (Bind Abst) u2 t2)
          (H0) consider H
          consider H0
          we proved pc3 c (THead (Bind Abst) u1 t1) (THead (Bind Abst) u2 t2)
 
          that is equivalent to 
             ex2
               T
               λt:T.pr3 c (THead (Bind Abst) u1 t1) t
               λt:T.pr3 c (THead (Bind Abst) u2 t2) t
           we proceed by induction on the previous result to prove land (pc3 c u1 u2) ∀b:B.∀u:T.(pc3 (CHead c (Bind b) u) t1 t2)
             case ex_intro2 : x:T H1:pr3 c (THead (Bind Abst) u1 t1) x H2:pr3 c (THead (Bind Abst) u2 t2) x ⇒
                the thesis becomes land (pc3 c u1 u2) ∀b:B.∀u:T.(pc3 (CHead c (Bind b) u) t1 t2)
                   (H3) 
                      by (pr3_gen_abst . . . . H2)
                         ex3_2
                           T
                           T
                           λu2:T.λt2:T.eq T x (THead (Bind Abst) u2 t2)
                           λu2:T.λ:T.pr3 c u2 u2
                           λ:T.λt2:T.∀b:B.∀u:T.(pr3 (CHead c (Bind b) u) t2 t2)
                    end of H3
                   we proceed by induction on H3 to prove land (pc3 c u1 u2) ∀b:B.∀u:T.(pc3 (CHead c (Bind b) u) t1 t2)
                      case ex3_2_intro : x0:T x1:T H4:eq T x (THead (Bind Abst) x0 x1) H5:pr3 c u2 x0 H6:∀b:B.∀u:T.(pr3 (CHead c (Bind b) u) t2 x1) ⇒
                         the thesis becomes land (pc3 c u1 u2) ∀b:B.∀u:T.(pc3 (CHead c (Bind b) u) t1 t2)
                            (H7) 
                               by (pr3_gen_abst . . . . H1)
                                  ex3_2
                                    T
                                    T
                                    λu2:T.λt2:T.eq T x (THead (Bind Abst) u2 t2)
                                    λu2:T.λ:T.pr3 c u1 u2
                                    λ:T.λt2:T.∀b:B.∀u:T.(pr3 (CHead c (Bind b) u) t1 t2)
                             end of H7
                            we proceed by induction on H7 to prove land (pc3 c u1 u2) ∀b:B.∀u:T.(pc3 (CHead c (Bind b) u) t1 t2)
                               case ex3_2_intro : x2:T x3:T H8:eq T x (THead (Bind Abst) x2 x3) H9:pr3 c u1 x2 H10:∀b:B.∀u:T.(pr3 (CHead c (Bind b) u) t1 x3) ⇒
                                  the thesis becomes land (pc3 c u1 u2) ∀b:B.∀u:T.(pc3 (CHead c (Bind b) u) t1 t2)
                                     (H11) 
                                        we proceed by induction on H8 to prove eq T (THead (Bind Abst) x2 x3) (THead (Bind Abst) x0 x1)
                                           case refl_equal : ⇒
                                              the thesis becomes the hypothesis H4
eq T (THead (Bind Abst) x2 x3) (THead (Bind Abst) x0 x1)
                                      end of H11
                                     (H12) 
                                        by (f_equal . . . . . H11)
                                        we proved 
                                           eq
                                             T
                                             <λ:T.T> CASE THead (Bind Abst) x2 x3 OF TSort ⇒x2 | TLRef ⇒x2 | THead  t ⇒t
                                             <λ:T.T> CASE THead (Bind Abst) x0 x1 OF TSort ⇒x2 | TLRef ⇒x2 | THead  t ⇒t
 
                                           eq
                                             T
                                             λe:T.<λ:T.T> CASE e OF TSort ⇒x2 | TLRef ⇒x2 | THead  t ⇒t
                                               THead (Bind Abst) x2 x3
                                             λe:T.<λ:T.T> CASE e OF TSort ⇒x2 | TLRef ⇒x2 | THead  t ⇒t
                                               THead (Bind Abst) x0 x1
                                      end of H12
                                     (h1) 
                                        (H13) 
                                           by (f_equal . . . . . H11)
                                           we proved 
                                              eq
                                                T
                                                <λ:T.T> CASE THead (Bind Abst) x2 x3 OF TSort ⇒x3 | TLRef ⇒x3 | THead   t⇒t
                                                <λ:T.T> CASE THead (Bind Abst) x0 x1 OF TSort ⇒x3 | TLRef ⇒x3 | THead   t⇒t
 
                                              eq
                                                T
                                                λe:T.<λ:T.T> CASE e OF TSort ⇒x3 | TLRef ⇒x3 | THead   t⇒t
                                                  THead (Bind Abst) x2 x3
                                                λe:T.<λ:T.T> CASE e OF TSort ⇒x3 | TLRef ⇒x3 | THead   t⇒t
                                                  THead (Bind Abst) x0 x1
                                         end of H13
                                        suppose H14: eq T x2 x0
                                           (H15) 
                                              consider H13
                                              we proved 
                                                 eq
                                                   T
                                                   <λ:T.T> CASE THead (Bind Abst) x2 x3 OF TSort ⇒x3 | TLRef ⇒x3 | THead   t⇒t
                                                   <λ:T.T> CASE THead (Bind Abst) x0 x1 OF TSort ⇒x3 | TLRef ⇒x3 | THead   t⇒t
 
                                              that is equivalent to eq T x3 x1
                                               we proceed by induction on the previous result to prove ∀b:B.∀u:T.(pr3 (CHead c (Bind b) u) t1 x1)
                                                 case refl_equal : ⇒
                                                    the thesis becomes the hypothesis H10
∀b:B.∀u:T.(pr3 (CHead c (Bind b) u) t1 x1)
                                            end of H15
                                           (H16) 
                                              we proceed by induction on H14 to prove pr3 c u1 x0
                                                 case refl_equal : ⇒
                                                    the thesis becomes the hypothesis H9
pr3 c u1 x0
                                            end of H16
                                           (h1) 
                                              by (pc3_pr3_t . . . H16 . H5)
pc3 c u1 u2
                                            end of h1
                                           (h2) 
                                               assume b: B
                                               assume u: T
                                                 (h1) 
                                                    by (H15 . .)
pr3 (CHead c (Bind b) u) t1 x1
                                                  end of h1
                                                 (h2) 
                                                    by (H6 . .)
pr3 (CHead c (Bind b) u) t2 x1
                                                  end of h2
                                                 by (pc3_pr3_t . . . h1 . h2)
                                                 we proved pc3 (CHead c (Bind b) u) t1 t2
 
∀b:B.∀u:T.(pc3 (CHead c (Bind b) u) t1 t2)
                                            end of h2
                                           by (conj . . h1 h2)
                                           we proved land (pc3 c u1 u2) ∀b:B.∀u:T.(pc3 (CHead c (Bind b) u) t1 t2)
 
(eq T x2 x0)→(land (pc3 c u1 u2) ∀b:B.∀u:T.(pc3 (CHead c (Bind b) u) t1 t2))
                                      end of h1
                                     (h2) 
                                        consider H12
                                        we proved 
                                           eq
                                             T
                                             <λ:T.T> CASE THead (Bind Abst) x2 x3 OF TSort ⇒x2 | TLRef ⇒x2 | THead  t ⇒t
                                             <λ:T.T> CASE THead (Bind Abst) x0 x1 OF TSort ⇒x2 | TLRef ⇒x2 | THead  t ⇒t
 
eq T x2 x0
                                      end of h2
                                     by (h1 h2)
land (pc3 c u1 u2) ∀b:B.∀u:T.(pc3 (CHead c (Bind b) u) t1 t2)
 
land (pc3 c u1 u2) ∀b:B.∀u:T.(pc3 (CHead c (Bind b) u) t1 t2)
 
land (pc3 c u1 u2) ∀b:B.∀u:T.(pc3 (CHead c (Bind b) u) t1 t2)
 
          we proved land (pc3 c u1 u2) ∀b:B.∀u:T.(pc3 (CHead c (Bind b) u) t1 t2)
 
       we proved 
          ∀c:C
            .∀u1:T
              .∀u2:T
                .∀t1:T
                  .∀t2:T
                    .pc3 c (THead (Bind Abst) u1 t1) (THead (Bind Abst) u2 t2)
                      →land (pc3 c u1 u2) ∀b:B.∀u:T.(pc3 (CHead c (Bind b) u) t1 t2)