DEFINITION pc3_left_ind()
TYPE =
∀c:C
.∀P:T→T→Prop
.∀t:T.(P t t)
→(∀t:T.∀t1:T.(pr2 c t t1)→∀t2:T.(pc3_left c t1 t2)→(P t1 t2)→(P t t2)
→(∀t:T.∀t1:T.(pr2 c t t1)→∀t2:T.(pc3_left c t t2)→(P t t2)→(P t1 t2)
→∀t:T.∀t1:T.(pc3_left c t t1)→(P t t1)))
BODY =
assume c: C
assume P: T→T→Prop
suppose H: ∀t:T.(P t t)
suppose H1: ∀t:T.∀t1:T.(pr2 c t t1)→∀t2:T.(pc3_left c t1 t2)→(P t1 t2)→(P t t2)
suppose H2: ∀t:T.∀t1:T.(pr2 c t t1)→∀t2:T.(pc3_left c t t2)→(P t t2)→(P t1 t2)
(aux) by well-founded reasoning we prove ∀t:T.∀t1:T.(pc3_left c t t1)→(P t t1)
assume t: T
assume t1: T
suppose H3: pc3_left c t t1
by cases on H3 we prove P t t1
case pc3_left_r t2:T ⇒
the thesis becomes P t2 t2
by (H .)
P t2 t2
case pc3_left_ur t2:T t3:T H4:pr2 c t2 t3 t4:T H5:pc3_left c t3 t4 ⇒
the thesis becomes P t2 t4
by (aux . . H5)
we proved P t3 t4
by (H1 . . H4 . H5 previous)
P t2 t4
case pc3_left_ux t2:T t3:T H4:pr2 c t2 t3 t4:T H5:pc3_left c t2 t4 ⇒
the thesis becomes P t3 t4
by (aux . . H5)
we proved P t2 t4
by (H2 . . H4 . H5 previous)
P t3 t4
we proved P t t1
∀t:T.∀t1:T.(pc3_left c t t1)→(P t t1)
done
consider aux
we proved ∀t:T.∀t1:T.(pc3_left c t t1)→(P t t1)
we proved
∀c:C
.∀P:T→T→Prop
.∀t:T.(P t t)
→(∀t:T.∀t1:T.(pr2 c t t1)→∀t2:T.(pc3_left c t1 t2)→(P t1 t2)→(P t t2)
→(∀t:T.∀t1:T.(pr2 c t t1)→∀t2:T.(pc3_left c t t2)→(P t t2)→(P t1 t2)
→∀t:T.∀t1:T.(pc3_left c t t1)→(P t t1)))