DEFINITION pc3_left_ind()
TYPE =
       c:C
         .P:TTProp
           .t:T.(P t t)
             (t:T.t1:T.(pr2 c t t1)t2:T.(pc3_left c t1 t2)(P t1 t2)(P t t2)
                  (t:T.t1:T.(pr2 c t t1)t2:T.(pc3_left c t t2)(P t t2)(P t1 t2)
                       t:T.t1:T.(pc3_left c t t1)(P t t1)))
BODY =
        assume cC
        assume PTTProp
        suppose Ht:T.(P t t)
        suppose H1t:T.t1:T.(pr2 c t t1)t2:T.(pc3_left c t1 t2)(P t1 t2)(P t t2)
        suppose H2t:T.t1:T.(pr2 c t t1)t2:T.(pc3_left c t t2)(P t t2)(P t1 t2)
          (aux) by well-founded reasoning we prove t:T.t1:T.(pc3_left c t t1)(P t t1)
           assume tT
           assume t1T
           suppose H3pc3_left c t t1
             by cases on H3 we prove P t t1
                case pc3_left_r t2:T 
                   the thesis becomes P t2 t2
                   by (H .)
P t2 t2
                case pc3_left_ur t2:T t3:T H4:pr2 c t2 t3 t4:T H5:pc3_left c t3 t4 
                   the thesis becomes P t2 t4
                   by (aux . . H5)
                   we proved P t3 t4
                   by (H1 . . H4 . H5 previous)
P t2 t4
                case pc3_left_ux t2:T t3:T H4:pr2 c t2 t3 t4:T H5:pc3_left c t2 t4 
                   the thesis becomes P t3 t4
                   by (aux . . H5)
                   we proved P t2 t4
                   by (H2 . . H4 . H5 previous)
P t3 t4
             we proved P t t1
t:T.t1:T.(pc3_left c t t1)(P t t1)
          done
          consider aux
          we proved t:T.t1:T.(pc3_left c t t1)(P t t1)
       we proved 
          c:C
            .P:TTProp
              .t:T.(P t t)
                (t:T.t1:T.(pr2 c t t1)t2:T.(pc3_left c t1 t2)(P t1 t2)(P t t2)
                     (t:T.t1:T.(pr2 c t t1)t2:T.(pc3_left c t t2)(P t t2)(P t1 t2)
                          t:T.t1:T.(pc3_left c t t1)(P t t1)))