DEFINITION pc1_t()
TYPE =
∀t2:T.∀t1:T.(pc1 t1 t2)→∀t3:T.(pc1 t2 t3)→(pc1 t1 t3)
BODY =
assume t2: T
assume t1: T
suppose H: pc1 t1 t2
assume t3: T
suppose H0: pc1 t2 t3
(H1) consider H0
consider H1
we proved pc1 t2 t3
that is equivalent to ex2 T λt:T.pr1 t2 t λt:T.pr1 t3 t
we proceed by induction on the previous result to prove pc1 t1 t3
case ex_intro2 : x:T H2:pr1 t2 x H3:pr1 t3 x ⇒
the thesis becomes pc1 t1 t3
(H4) consider H
consider H4
we proved pc1 t1 t2
that is equivalent to ex2 T λt:T.pr1 t1 t λt:T.pr1 t2 t
we proceed by induction on the previous result to prove pc1 t1 t3
case ex_intro2 : x0:T H5:pr1 t1 x0 H6:pr1 t2 x0 ⇒
the thesis becomes pc1 t1 t3
by (pr1_confluence . . H6 . H2)
we proved ex2 T λt:T.pr1 x0 t λt:T.pr1 x t
we proceed by induction on the previous result to prove pc1 t1 t3
case ex_intro2 : x1:T H7:pr1 x0 x1 H8:pr1 x x1 ⇒
the thesis becomes pc1 t1 t3
(h1) by (pr1_t . . H5 . H7) we proved pr1 t1 x1
(h2) by (pr1_t . . H3 . H8) we proved pr1 t3 x1
by (ex_intro2 . . . . h1 h2)
we proved ex2 T λt:T.pr1 t1 t λt:T.pr1 t3 t
pc1 t1 t3
pc1 t1 t3
pc1 t1 t3
we proved pc1 t1 t3
we proved ∀t2:T.∀t1:T.(pc1 t1 t2)→∀t3:T.(pc1 t2 t3)→(pc1 t1 t3)