DEFINITION pc1_pr0_u()
TYPE =
∀t2:T.∀t1:T.(pr0 t1 t2)→∀t3:T.(pc1 t2 t3)→(pc1 t1 t3)
BODY =
assume t2: T
assume t1: T
suppose H: pr0 t1 t2
assume t3: T
suppose H0: pc1 t2 t3
(H1) consider H0
consider H1
we proved pc1 t2 t3
that is equivalent to ex2 T λt:T.pr1 t2 t λt:T.pr1 t3 t
we proceed by induction on the previous result to prove pc1 t1 t3
case ex_intro2 : x:T H2:pr1 t2 x H3:pr1 t3 x ⇒
the thesis becomes pc1 t1 t3
by (pr1_sing . . H . H2)
we proved pr1 t1 x
by (ex_intro2 . . . . previous H3)
we proved ex2 T λt:T.pr1 t1 t λt:T.pr1 t3 t
pc1 t1 t3
we proved pc1 t1 t3
we proved ∀t2:T.∀t1:T.(pr0 t1 t2)→∀t3:T.(pc1 t2 t3)→(pc1 t1 t3)