DEFINITION pc1_head_1()
TYPE =
∀u1:T.∀u2:T.(pc1 u1 u2)→∀t:T.∀k:K.(pc1 (THead k u1 t) (THead k u2 t))
BODY =
assume u1: T
assume u2: T
suppose H: pc1 u1 u2
assume t: T
assume k: K
(H0) consider H
consider H0
we proved pc1 u1 u2
that is equivalent to ex2 T λt0:T.pr1 u1 t0 λt0:T.pr1 u2 t0
we proceed by induction on the previous result to prove pc1 (THead k u1 t) (THead k u2 t)
case ex_intro2 : x:T H1:pr1 u1 x H2:pr1 u2 x ⇒
the thesis becomes pc1 (THead k u1 t) (THead k u2 t)
(h1)
by (pr1_head_1 . . H1 . .)
pr1 (THead k u1 t) (THead k x t)
end of h1
(h2)
by (pr1_head_1 . . H2 . .)
pr1 (THead k u2 t) (THead k x t)
end of h2
by (ex_intro2 . . . . h1 h2)
we proved ex2 T λt0:T.pr1 (THead k u1 t) t0 λt0:T.pr1 (THead k u2 t) t0
pc1 (THead k u1 t) (THead k u2 t)
we proved pc1 (THead k u1 t) (THead k u2 t)
we proved ∀u1:T.∀u2:T.(pc1 u1 u2)→∀t:T.∀k:K.(pc1 (THead k u1 t) (THead k u2 t))