DEFINITION nf2_pr3_unfold()
TYPE =
       c:C.t1:T.t2:T.(pr3 c t1 t2)(nf2 c t1)(eq T t1 t2)
BODY =
        assume cC
        assume t1T
        assume t2T
        suppose Hpr3 c t1 t2
          we proceed by induction on H to prove (nf2 c t1)(eq T t1 t2)
             case pr3_refl : t:T 
                the thesis becomes H0:(nf2 c t).(eq T t t)
                   suppose H0nf2 c t
                      by (pr0_refl .)
                      we proved pr0 t t
                      by (pr2_free . . . previous)
                      we proved pr2 c t t
                      by (H0 . previous)
                      we proved eq T t t
H0:(nf2 c t).(eq T t t)
             case pr3_sing : t0:T t3:T H0:pr2 c t3 t0 t4:T :pr3 c t0 t4 
                the thesis becomes H3:(nf2 c t3).(eq T t3 t4)
                (H2) by induction hypothesis we know (nf2 c t0)(eq T t0 t4)
                   suppose H3nf2 c t3
                      (H4consider H3
                      (H5
                         by (H4 . H0)
                         we proved eq T t3 t0
                         we proceed by induction on the previous result to prove nf2 c t0
                            case refl_equal : 
                               the thesis becomes the hypothesis H3
nf2 c t0
                      end of H5
                      (h1by (H2 H5) we proved eq T t0 t4
                      (h2by (H4 . H0) we proved eq T t3 t0
                      by (eq_ind_r . . . h1 . h2)
                      we proved eq T t3 t4
H3:(nf2 c t3).(eq T t3 t4)
          we proved (nf2 c t1)(eq T t1 t2)
       we proved c:C.t1:T.t2:T.(pr3 c t1 t2)(nf2 c t1)(eq T t1 t2)