DEFINITION nf2_gen_flat()
TYPE =
∀f:F.∀c:C.∀u:T.∀t:T.(nf2 c (THead (Flat f) u t))→(land (nf2 c u) (nf2 c t))
BODY =
assume f: F
assume c: C
assume u: T
assume t: T
we must prove (nf2 c (THead (Flat f) u t))→(land (nf2 c u) (nf2 c t))
or equivalently
∀t2:T.(pr2 c (THead (Flat f) u t) t2)→(eq T (THead (Flat f) u t) t2)
→land (nf2 c u) (nf2 c t)
suppose H: ∀t2:T.(pr2 c (THead (Flat f) u t) t2)→(eq T (THead (Flat f) u t) t2)
(h1)
assume t2: T
suppose H0: pr2 c u t2
(H1)
by (pr2_head_1 . . . H0 . .)
we proved pr2 c (THead (Flat f) u t) (THead (Flat f) t2 t)
by (H . previous)
we proved eq T (THead (Flat f) u t) (THead (Flat f) t2 t)
by (f_equal . . . . . previous)
we proved
eq
T
<λ:T.T> CASE THead (Flat f) u t OF TSort ⇒u | TLRef ⇒u | THead t0 ⇒t0
<λ:T.T> CASE THead (Flat f) t2 t OF TSort ⇒u | TLRef ⇒u | THead t0 ⇒t0
eq
T
λe:T.<λ:T.T> CASE e OF TSort ⇒u | TLRef ⇒u | THead t0 ⇒t0
THead (Flat f) u t
λe:T.<λ:T.T> CASE e OF TSort ⇒u | TLRef ⇒u | THead t0 ⇒t0
THead (Flat f) t2 t
end of H1
consider H1
we proved
eq
T
<λ:T.T> CASE THead (Flat f) u t OF TSort ⇒u | TLRef ⇒u | THead t0 ⇒t0
<λ:T.T> CASE THead (Flat f) t2 t OF TSort ⇒u | TLRef ⇒u | THead t0 ⇒t0
that is equivalent to eq T u t2
∀t2:T.(pr2 c u t2)→(eq T u t2)
end of h1
(h2)
assume t2: T
suppose H0: pr2 c t t2
(H1)
by (pr2_cflat . . . H0 . .)
we proved pr2 (CHead c (Flat f) u) t t2
by (pr2_head_2 . . . . . previous)
we proved pr2 c (THead (Flat f) u t) (THead (Flat f) u t2)
by (H . previous)
we proved eq T (THead (Flat f) u t) (THead (Flat f) u t2)
by (f_equal . . . . . previous)
we proved
eq
T
<λ:T.T> CASE THead (Flat f) u t OF TSort ⇒t | TLRef ⇒t | THead t0⇒t0
<λ:T.T> CASE THead (Flat f) u t2 OF TSort ⇒t | TLRef ⇒t | THead t0⇒t0
eq
T
λe:T.<λ:T.T> CASE e OF TSort ⇒t | TLRef ⇒t | THead t0⇒t0
THead (Flat f) u t
λe:T.<λ:T.T> CASE e OF TSort ⇒t | TLRef ⇒t | THead t0⇒t0
THead (Flat f) u t2
end of H1
consider H1
we proved
eq
T
<λ:T.T> CASE THead (Flat f) u t OF TSort ⇒t | TLRef ⇒t | THead t0⇒t0
<λ:T.T> CASE THead (Flat f) u t2 OF TSort ⇒t | TLRef ⇒t | THead t0⇒t0
that is equivalent to eq T t t2
∀t2:T.(pr2 c t t2)→(eq T t t2)
end of h2
by (conj . . h1 h2)
we proved land ∀t2:T.(pr2 c u t2)→(eq T u t2) ∀t2:T.(pr2 c t t2)→(eq T t t2)
that is equivalent to land (nf2 c u) (nf2 c t)
we proved
∀t2:T.(pr2 c (THead (Flat f) u t) t2)→(eq T (THead (Flat f) u t) t2)
→land (nf2 c u) (nf2 c t)
that is equivalent to (nf2 c (THead (Flat f) u t))→(land (nf2 c u) (nf2 c t))
we proved ∀f:F.∀c:C.∀u:T.∀t:T.(nf2 c (THead (Flat f) u t))→(land (nf2 c u) (nf2 c t))