DEFINITION llt_trans()
TYPE =
∀a1:A.∀a2:A.∀a3:A.(llt a1 a2)→(llt a2 a3)→(llt a1 a3)
BODY =
assume a1: A
assume a2: A
assume a3: A
we must prove (llt a1 a2)→(llt a2 a3)→(llt a1 a3)
or equivalently (lt (lweight a1) (lweight a2))→(llt a2 a3)→(llt a1 a3)
suppose H: lt (lweight a1) (lweight a2)
we must prove (llt a2 a3)→(llt a1 a3)
or equivalently (lt (lweight a2) (lweight a3))→(llt a1 a3)
suppose H0: lt (lweight a2) (lweight a3)
by (lt_trans . . . H H0)
we proved lt (lweight a1) (lweight a3)
that is equivalent to llt a1 a3
we proved (lt (lweight a2) (lweight a3))→(llt a1 a3)
that is equivalent to (llt a2 a3)→(llt a1 a3)
we proved (lt (lweight a1) (lweight a2))→(llt a2 a3)→(llt a1 a3)
that is equivalent to (llt a1 a2)→(llt a2 a3)→(llt a1 a3)
we proved ∀a1:A.∀a2:A.∀a3:A.(llt a1 a2)→(llt a2 a3)→(llt a1 a3)