DEFINITION lifts1_nil()
TYPE =
∀ts:TList.(eq TList (lifts1 PNil ts) ts)
BODY =
assume ts: TList
we proceed by induction on ts to prove eq TList (lifts1 PNil ts) ts
case TNil : ⇒
the thesis becomes eq TList (lifts1 PNil TNil) TNil
by (refl_equal . .)
we proved eq TList TNil TNil
eq TList (lifts1 PNil TNil) TNil
case TCons : t:T t0:TList ⇒
the thesis becomes eq TList (lifts1 PNil (TCons t t0)) (TCons t t0)
(H) by induction hypothesis we know eq TList (lifts1 PNil t0) t0
by (refl_equal . .)
we proved eq TList (TCons t t0) (TCons t t0)
by (eq_ind_r . . . previous . H)
we proved eq TList (TCons t (lifts1 PNil t0)) (TCons t t0)
eq TList (lifts1 PNil (TCons t t0)) (TCons t t0)
we proved eq TList (lifts1 PNil ts) ts
we proved ∀ts:TList.(eq TList (lifts1 PNil ts) ts)