DEFINITION lift1_sort()
TYPE =
∀n:nat.∀is:PList.(eq T (lift1 is (TSort n)) (TSort n))
BODY =
assume n: nat
assume is: PList
we proceed by induction on is to prove eq T (lift1 is (TSort n)) (TSort n)
case PNil : ⇒
the thesis becomes eq T (lift1 PNil (TSort n)) (TSort n)
by (refl_equal . .)
we proved eq T (TSort n) (TSort n)
eq T (lift1 PNil (TSort n)) (TSort n)
case PCons : n0:nat n1:nat p:PList ⇒
the thesis becomes eq T (lift1 (PCons n0 n1 p) (TSort n)) (TSort n)
(H) by induction hypothesis we know eq T (lift1 p (TSort n)) (TSort n)
by (refl_equal . .)
we proved eq T (TSort n) (TSort n)
that is equivalent to eq T (lift n0 n1 (TSort n)) (TSort n)
by (eq_ind_r . . . previous . H)
we proved eq T (lift n0 n1 (lift1 p (TSort n))) (TSort n)
eq T (lift1 (PCons n0 n1 p) (TSort n)) (TSort n)
we proved eq T (lift1 is (TSort n)) (TSort n)
we proved ∀n:nat.∀is:PList.(eq T (lift1 is (TSort n)) (TSort n))