DEFINITION lift_sort()
TYPE =
∀n:nat.∀h:nat.∀d:nat.(eq T (lift h d (TSort n)) (TSort n))
BODY =
assume n: nat
assume : nat
assume : nat
by (refl_equal . .)
we proved eq T (TSort n) (TSort n)
that is equivalent to eq T (lift __2 __1 (TSort n)) (TSort n)
we proved ∀n:nat.nat→nat→(eq T (lift __2 __1 (TSort n)) (TSort n))