DEFINITION lift_flat()
TYPE =
∀f:F
.∀u:T
.∀t:T
.∀h:nat
.∀d:nat
.eq
T
lift h d (THead (Flat f) u t)
THead (Flat f) (lift h d u) (lift h d t)
BODY =
assume f: F
assume u: T
assume t: T
assume h: nat
assume d: nat
by (refl_equal . .)
we proved
eq
T
THead (Flat f) (lift h d u) (lift h d t)
THead (Flat f) (lift h d u) (lift h d t)
that is equivalent to
eq
T
lift h d (THead (Flat f) u t)
THead (Flat f) (lift h d u) (lift h d t)
we proved
∀f:F
.∀u:T
.∀t:T
.∀h:nat
.∀d:nat
.eq
T
lift h d (THead (Flat f) u t)
THead (Flat f) (lift h d u) (lift h d t)