DEFINITION lift_bind()
TYPE =
∀b:B
.∀u:T
.∀t:T
.∀h:nat
.∀d:nat
.eq
T
lift h d (THead (Bind b) u t)
THead (Bind b) (lift h d u) (lift h (S d) t)
BODY =
assume b: B
assume u: T
assume t: T
assume h: nat
assume d: nat
by (refl_equal . .)
we proved
eq
T
THead (Bind b) (lift h d u) (lift h (S d) t)
THead (Bind b) (lift h d u) (lift h (S d) t)
that is equivalent to
eq
T
lift h d (THead (Bind b) u t)
THead (Bind b) (lift h d u) (lift h (S d) t)
we proved
∀b:B
.∀u:T
.∀t:T
.∀h:nat
.∀d:nat
.eq
T
lift h d (THead (Bind b) u t)
THead (Bind b) (lift h d u) (lift h (S d) t)