DEFINITION leq_eq()
TYPE =
∀g:G.∀a1:A.∀a2:A.(eq A a1 a2)→(leq g a1 a2)
BODY =
assume g: G
assume a1: A
assume a2: A
suppose H: eq A a1 a2
we proceed by induction on H to prove leq g a1 a2
case refl_equal : ⇒
the thesis becomes leq g a1 a1
by (leq_refl . .)
leq g a1 a1
we proved leq g a1 a2
we proved ∀g:G.∀a1:A.∀a2:A.(eq A a1 a2)→(leq g a1 a2)