DEFINITION leq_ahead_false_2()
TYPE =
       g:G.a2:A.a1:A.(leq g (AHead a1 a2) a2)P:Prop.P
BODY =
        assume gG
        assume a2A
          we proceed by induction on a2 to prove a1:A.(leq g (AHead a1 a2) a2)P:Prop.P
             case ASort : n:nat n0:nat 
                the thesis becomes a1:A.H:(leq g (AHead a1 (ASort n n0)) (ASort n n0)).P:Prop.P
                    assume a1A
                    suppose Hleq g (AHead a1 (ASort n n0)) (ASort n n0)
                    assume PProp
                      suppose H0leq g (AHead a1 (ASort O n0)) (ASort O n0)
                         (H_x
                            by (leq_gen_head1 . . . . H0)

                               ex3_2
                                 A
                                 A
                                 λa3:A.λ:A.leq g a1 a3
                                 λ:A.λa4:A.leq g (ASort O n0) a4
                                 λa3:A.λa4:A.eq A (ASort O n0) (AHead a3 a4)
                         end of H_x
                         (H1consider H_x
                         we proceed by induction on H1 to prove P
                            case ex3_2_intro : x0:A x1:A :leq g a1 x0 :leq g (ASort O n0) x1 H4:eq A (ASort O n0) (AHead x0 x1) 
                               the thesis becomes P
                                  (H5
                                     we proceed by induction on H4 to prove <λ:A.Prop> CASE AHead x0 x1 OF ASort  True | AHead  False
                                        case refl_equal : 
                                           the thesis becomes <λ:A.Prop> CASE ASort O n0 OF ASort  True | AHead  False
                                              consider I
                                              we proved True
<λ:A.Prop> CASE ASort O n0 OF ASort  True | AHead  False
<λ:A.Prop> CASE AHead x0 x1 OF ASort  True | AHead  False
                                  end of H5
                                  consider H5
                                  we proved <λ:A.Prop> CASE AHead x0 x1 OF ASort  True | AHead  False
                                  that is equivalent to False
                                  we proceed by induction on the previous result to prove P
P
                         we proved P
(leq g (AHead a1 (ASort O n0)) (ASort O n0))P
                       assume n1nat
                          suppose (leq g (AHead a1 (ASort n1 n0)) (ASort n1 n0))P
                         suppose H0leq g (AHead a1 (ASort (S n1) n0)) (ASort (S n1) n0)
                            (H_x
                               by (leq_gen_head1 . . . . H0)

                                  ex3_2
                                    A
                                    A
                                    λa3:A.λ:A.leq g a1 a3
                                    λ:A.λa4:A.leq g (ASort (S n1) n0) a4
                                    λa3:A.λa4:A.eq A (ASort (S n1) n0) (AHead a3 a4)
                            end of H_x
                            (H1consider H_x
                            we proceed by induction on H1 to prove P
                               case ex3_2_intro : x0:A x1:A :leq g a1 x0 :leq g (ASort (S n1) n0) x1 H4:eq A (ASort (S n1) n0) (AHead x0 x1) 
                                  the thesis becomes P
                                     (H5
                                        we proceed by induction on H4 to prove <λ:A.Prop> CASE AHead x0 x1 OF ASort  True | AHead  False
                                           case refl_equal : 
                                              the thesis becomes <λ:A.Prop> CASE ASort (S n1) n0 OF ASort  True | AHead  False
                                                 consider I
                                                 we proved True
<λ:A.Prop> CASE ASort (S n1) n0 OF ASort  True | AHead  False
<λ:A.Prop> CASE AHead x0 x1 OF ASort  True | AHead  False
                                     end of H5
                                     consider H5
                                     we proved <λ:A.Prop> CASE AHead x0 x1 OF ASort  True | AHead  False
                                     that is equivalent to False
                                     we proceed by induction on the previous result to prove P
P
                            we proved P
H0:(leq g (AHead a1 (ASort (S n1) n0)) (ASort (S n1) n0)).P
                      by (previous . H)
                      we proved P
a1:A.H:(leq g (AHead a1 (ASort n n0)) (ASort n n0)).P:Prop.P
             case AHead : a:A a0:A 
                the thesis becomes a1:A.H1:(leq g (AHead a1 (AHead a a0)) (AHead a a0)).P:Prop.P
                () by induction hypothesis we know a1:A.(leq g (AHead a1 a) a)P:Prop.P
                (H0) by induction hypothesis we know a1:A.(leq g (AHead a1 a0) a0)P:Prop.P
                    assume a1A
                    suppose H1leq g (AHead a1 (AHead a a0)) (AHead a a0)
                    assume PProp
                      (H_x
                         by (leq_gen_head1 . . . . H1)

                            ex3_2
                              A
                              A
                              λa3:A.λ:A.leq g a1 a3
                              λ:A.λa4:A.leq g (AHead a a0) a4
                              λa3:A.λa4:A.eq A (AHead a a0) (AHead a3 a4)
                      end of H_x
                      (H2consider H_x
                      we proceed by induction on H2 to prove P
                         case ex3_2_intro : x0:A x1:A H3:leq g a1 x0 H4:leq g (AHead a a0) x1 H5:eq A (AHead a a0) (AHead x0 x1) 
                            the thesis becomes P
                               (H6
                                  by (f_equal . . . . . H5)
                                  we proved 
                                     eq
                                       A
                                       <λ:A.A> CASE AHead a a0 OF ASort  a | AHead a3 a3
                                       <λ:A.A> CASE AHead x0 x1 OF ASort  a | AHead a3 a3

                                     eq
                                       A
                                       λe:A.<λ:A.A> CASE e OF ASort  a | AHead a3 a3 (AHead a a0)
                                       λe:A.<λ:A.A> CASE e OF ASort  a | AHead a3 a3 (AHead x0 x1)
                               end of H6
                               (h1
                                  (H7
                                     by (f_equal . . . . . H5)
                                     we proved 
                                        eq
                                          A
                                          <λ:A.A> CASE AHead a a0 OF ASort  a0 | AHead  a3a3
                                          <λ:A.A> CASE AHead x0 x1 OF ASort  a0 | AHead  a3a3

                                        eq
                                          A
                                          λe:A.<λ:A.A> CASE e OF ASort  a0 | AHead  a3a3 (AHead a a0)
                                          λe:A.<λ:A.A> CASE e OF ASort  a0 | AHead  a3a3 (AHead x0 x1)
                                  end of H7
                                  suppose H8eq A a x0
                                     (H9
                                        consider H7
                                        we proved 
                                           eq
                                             A
                                             <λ:A.A> CASE AHead a a0 OF ASort  a0 | AHead  a3a3
                                             <λ:A.A> CASE AHead x0 x1 OF ASort  a0 | AHead  a3a3
                                        that is equivalent to eq A a0 x1
                                        by (eq_ind_r . . . H4 . previous)
leq g (AHead a a0) a0
                                     end of H9
                                     by (H0 . H9 .)
                                     we proved P
(eq A a x0)P
                               end of h1
                               (h2
                                  consider H6
                                  we proved 
                                     eq
                                       A
                                       <λ:A.A> CASE AHead a a0 OF ASort  a | AHead a3 a3
                                       <λ:A.A> CASE AHead x0 x1 OF ASort  a | AHead a3 a3
eq A a x0
                               end of h2
                               by (h1 h2)
P
                      we proved P
a1:A.H1:(leq g (AHead a1 (AHead a a0)) (AHead a a0)).P:Prop.P
          we proved a1:A.(leq g (AHead a1 a2) a2)P:Prop.P
       we proved g:G.a2:A.a1:A.(leq g (AHead a1 a2) a2)P:Prop.P