DEFINITION leq_ahead_asucc_false()
TYPE =
       g:G.a1:A.a2:A.(leq g (AHead a1 a2) (asucc g a1))P:Prop.P
BODY =
        assume gG
        assume a1A
          we proceed by induction on a1 to prove a2:A.(leq g (AHead a1 a2) (asucc g a1))P:Prop.P
             case ASort : n:nat n0:nat 
                the thesis becomes a2:A.(leq g (AHead (ASort n n0) a2) (asucc g (ASort n n0)))P:Prop.P
                   assume a2A
                      we must prove (leq g (AHead (ASort n n0) a2) (asucc g (ASort n n0)))P:Prop.P
                      or equivalently 
                            (leq
                                g
                                AHead (ASort n n0) a2
                                <λn1:nat.A> CASE n OF OASort O (next g n0) | S hASort h n0)
                              P:Prop.P
                       suppose H
                          leq
                            g
                            AHead (ASort n n0) a2
                            <λn1:nat.A> CASE n OF OASort O (next g n0) | S hASort h n0
                       assume PProp
                         we must prove 
                               (leq
                                   g
                                   AHead (ASort O n0) a2
                                   <λn2:nat.A> CASE O OF OASort O (next g n0) | S hASort h n0)
                                 P
                         or equivalently (leq g (AHead (ASort O n0) a2) (ASort O (next g n0)))P
                         suppose H0leq g (AHead (ASort O n0) a2) (ASort O (next g n0))
                            (H_x
                               by (leq_gen_head1 . . . . H0)

                                  ex3_2
                                    A
                                    A
                                    λa3:A.λ:A.leq g (ASort O n0) a3
                                    λ:A.λa4:A.leq g a2 a4
                                    λa3:A.λa4:A.eq A (ASort O (next g n0)) (AHead a3 a4)
                            end of H_x
                            (H1consider H_x
                            we proceed by induction on H1 to prove P
                               case ex3_2_intro : x0:A x1:A :leq g (ASort O n0) x0 :leq g a2 x1 H4:eq A (ASort O (next g n0)) (AHead x0 x1) 
                                  the thesis becomes P
                                     (H5
                                        we proceed by induction on H4 to prove <λ:A.Prop> CASE AHead x0 x1 OF ASort  True | AHead  False
                                           case refl_equal : 
                                              the thesis becomes <λ:A.Prop> CASE ASort O (next g n0) OF ASort  True | AHead  False
                                                 consider I
                                                 we proved True
<λ:A.Prop> CASE ASort O (next g n0) OF ASort  True | AHead  False
<λ:A.Prop> CASE AHead x0 x1 OF ASort  True | AHead  False
                                     end of H5
                                     consider H5
                                     we proved <λ:A.Prop> CASE AHead x0 x1 OF ASort  True | AHead  False
                                     that is equivalent to False
                                     we proceed by induction on the previous result to prove P
P
                            we proved P
                         we proved (leq g (AHead (ASort O n0) a2) (ASort O (next g n0)))P

                            (leq
                                g
                                AHead (ASort O n0) a2
                                <λn2:nat.A> CASE O OF OASort O (next g n0) | S hASort h n0)
                              P
                          assume n1nat
                             suppose 
                                (leq
                                    g
                                    AHead (ASort n1 n0) a2
                                    <λn2:nat.A> CASE n1 OF OASort O (next g n0) | S hASort h n0)
                                  P
                            we must prove 
                                  (leq
                                      g
                                      AHead (ASort (S n1) n0) a2
                                      <λn2:nat.A> CASE S n1 OF OASort O (next g n0) | S hASort h n0)
                                    P
                            or equivalently (leq g (AHead (ASort (S n1) n0) a2) (ASort n1 n0))P
                            suppose H0leq g (AHead (ASort (S n1) n0) a2) (ASort n1 n0)
                               (H_x
                                  by (leq_gen_head1 . . . . H0)

                                     ex3_2
                                       A
                                       A
                                       λa3:A.λ:A.leq g (ASort (S n1) n0) a3
                                       λ:A.λa4:A.leq g a2 a4
                                       λa3:A.λa4:A.eq A (ASort n1 n0) (AHead a3 a4)
                               end of H_x
                               (H1consider H_x
                               we proceed by induction on H1 to prove P
                                  case ex3_2_intro : x0:A x1:A :leq g (ASort (S n1) n0) x0 :leq g a2 x1 H4:eq A (ASort n1 n0) (AHead x0 x1) 
                                     the thesis becomes P
                                        (H5
                                           we proceed by induction on H4 to prove <λ:A.Prop> CASE AHead x0 x1 OF ASort  True | AHead  False
                                              case refl_equal : 
                                                 the thesis becomes <λ:A.Prop> CASE ASort n1 n0 OF ASort  True | AHead  False
                                                    consider I
                                                    we proved True
<λ:A.Prop> CASE ASort n1 n0 OF ASort  True | AHead  False
<λ:A.Prop> CASE AHead x0 x1 OF ASort  True | AHead  False
                                        end of H5
                                        consider H5
                                        we proved <λ:A.Prop> CASE AHead x0 x1 OF ASort  True | AHead  False
                                        that is equivalent to False
                                        we proceed by induction on the previous result to prove P
P
                               we proved P
                            we proved (leq g (AHead (ASort (S n1) n0) a2) (ASort n1 n0))P

                               (leq
                                   g
                                   AHead (ASort (S n1) n0) a2
                                   <λn2:nat.A> CASE S n1 OF OASort O (next g n0) | S hASort h n0)
                                 P
                         by (previous . H)
                         we proved P
                      we proved 
                         (leq
                             g
                             AHead (ASort n n0) a2
                             <λn1:nat.A> CASE n OF OASort O (next g n0) | S hASort h n0)
                           P:Prop.P
                      that is equivalent to (leq g (AHead (ASort n n0) a2) (asucc g (ASort n n0)))P:Prop.P
a2:A.(leq g (AHead (ASort n n0) a2) (asucc g (ASort n n0)))P:Prop.P
             case AHead : a:A a0:A 
                the thesis becomes a2:A.(leq g (AHead (AHead a a0) a2) (asucc g (AHead a a0)))P:Prop.P
                () by induction hypothesis we know a2:A.(leq g (AHead a a2) (asucc g a))P:Prop.P
                () by induction hypothesis we know a2:A.(leq g (AHead a0 a2) (asucc g a0))P:Prop.P
                   assume a2A
                      we must prove (leq g (AHead (AHead a a0) a2) (asucc g (AHead a a0)))P:Prop.P
                      or equivalently (leq g (AHead (AHead a a0) a2) (AHead a (asucc g a0)))P:Prop.P
                       suppose H1leq g (AHead (AHead a a0) a2) (AHead a (asucc g a0))
                       assume PProp
                         (H_x
                            by (leq_gen_head1 . . . . H1)

                               ex3_2
                                 A
                                 A
                                 λa3:A.λ:A.leq g (AHead a a0) a3
                                 λ:A.λa4:A.leq g a2 a4
                                 λa3:A.λa4:A.eq A (AHead a (asucc g a0)) (AHead a3 a4)
                         end of H_x
                         (H2consider H_x
                         we proceed by induction on H2 to prove P
                            case ex3_2_intro : x0:A x1:A H3:leq g (AHead a a0) x0 H4:leq g a2 x1 H5:eq A (AHead a (asucc g a0)) (AHead x0 x1) 
                               the thesis becomes P
                                  (H6
                                     by (f_equal . . . . . H5)
                                     we proved 
                                        eq
                                          A
                                          <λ:A.A> CASE AHead a (asucc g a0) OF ASort  a | AHead a3 a3
                                          <λ:A.A> CASE AHead x0 x1 OF ASort  a | AHead a3 a3

                                        eq
                                          A
                                          λe:A.<λ:A.A> CASE e OF ASort  a | AHead a3 a3 (AHead a (asucc g a0))
                                          λe:A.<λ:A.A> CASE e OF ASort  a | AHead a3 a3 (AHead x0 x1)
                                  end of H6
                                  (h1
                                     (H7
                                        by (f_equal . . . . . H5)
                                        we proved 
                                           eq
                                             A
                                             <λ:A.A>
                                               CASE AHead a (asucc g a0) OF
                                                 ASort  
                                                     FIXasucc{
                                                         asucc:GAA
                                                         :=λg0:G
                                                           .λl:A
                                                             .<λa3:A.A>
                                                               CASE l OF
                                                                 ASort n0 n<λn1:nat.A> CASE n0 OF OASort O (next g0 n) | S hASort h n
                                                               | AHead a3 a4AHead a3 (asucc g0 a4)
                                                         }
                                                       g
                                                       a0
                                               | AHead  a3a3
                                             <λ:A.A>
                                               CASE AHead x0 x1 OF
                                                 ASort  
                                                     FIXasucc{
                                                         asucc:GAA
                                                         :=λg0:G
                                                           .λl:A
                                                             .<λa3:A.A>
                                                               CASE l OF
                                                                 ASort n0 n<λn1:nat.A> CASE n0 OF OASort O (next g0 n) | S hASort h n
                                                               | AHead a3 a4AHead a3 (asucc g0 a4)
                                                         }
                                                       g
                                                       a0
                                               | AHead  a3a3

                                           eq
                                             A
                                             λe:A
                                                 .<λ:A.A>
                                                   CASE e OF
                                                     ASort  
                                                         FIXasucc{
                                                             asucc:GAA
                                                             :=λg0:G
                                                               .λl:A
                                                                 .<λa3:A.A>
                                                                   CASE l OF
                                                                     ASort n0 n<λn1:nat.A> CASE n0 OF OASort O (next g0 n) | S hASort h n
                                                                   | AHead a3 a4AHead a3 (asucc g0 a4)
                                                             }
                                                           g
                                                           a0
                                                   | AHead  a3a3
                                               AHead a (asucc g a0)
                                             λe:A
                                                 .<λ:A.A>
                                                   CASE e OF
                                                     ASort  
                                                         FIXasucc{
                                                             asucc:GAA
                                                             :=λg0:G
                                                               .λl:A
                                                                 .<λa3:A.A>
                                                                   CASE l OF
                                                                     ASort n0 n<λn1:nat.A> CASE n0 OF OASort O (next g0 n) | S hASort h n
                                                                   | AHead a3 a4AHead a3 (asucc g0 a4)
                                                             }
                                                           g
                                                           a0
                                                   | AHead  a3a3
                                               AHead x0 x1
                                     end of H7
                                     suppose H8eq A a x0
                                        (H10
                                           by (eq_ind_r . . . H3 . H8)
leq g (AHead a a0) a
                                        end of H10
                                        by (leq_ahead_false_1 . . . H10 .)
                                        we proved P
(eq A a x0)P
                                  end of h1
                                  (h2
                                     consider H6
                                     we proved 
                                        eq
                                          A
                                          <λ:A.A> CASE AHead a (asucc g a0) OF ASort  a | AHead a3 a3
                                          <λ:A.A> CASE AHead x0 x1 OF ASort  a | AHead a3 a3
eq A a x0
                                  end of h2
                                  by (h1 h2)
P
                         we proved P
                      we proved (leq g (AHead (AHead a a0) a2) (AHead a (asucc g a0)))P:Prop.P
                      that is equivalent to (leq g (AHead (AHead a a0) a2) (asucc g (AHead a a0)))P:Prop.P
a2:A.(leq g (AHead (AHead a a0) a2) (asucc g (AHead a a0)))P:Prop.P
          we proved a2:A.(leq g (AHead a1 a2) (asucc g a1))P:Prop.P
       we proved g:G.a1:A.a2:A.(leq g (AHead a1 a2) (asucc g a1))P:Prop.P