DEFINITION iso_gen_lref()
TYPE =
∀u2:T.∀n1:nat.(iso (TLRef n1) u2)→(ex nat λn2:nat.eq T u2 (TLRef n2))
BODY =
assume u2: T
assume n1: nat
suppose H: iso (TLRef n1) u2
assume y: T
suppose H0: iso y u2
we proceed by induction on H0 to prove (eq T y (TLRef n1))→(ex nat λn2:nat.eq T u2 (TLRef n2))
case iso_sort : n0:nat n2:nat ⇒
the thesis becomes
∀H1:(eq T (TSort n0) (TLRef n1)).(ex nat λn3:nat.eq T (TSort n2) (TLRef n3))
suppose H1: eq T (TSort n0) (TLRef n1)
(H2)
we proceed by induction on H1 to prove
<λ:T.Prop>
CASE TLRef n1 OF
TSort ⇒True
| TLRef ⇒False
| THead ⇒False
case refl_equal : ⇒
the thesis becomes
<λ:T.Prop>
CASE TSort n0 OF
TSort ⇒True
| TLRef ⇒False
| THead ⇒False
consider I
we proved True
<λ:T.Prop>
CASE TSort n0 OF
TSort ⇒True
| TLRef ⇒False
| THead ⇒False
<λ:T.Prop>
CASE TLRef n1 OF
TSort ⇒True
| TLRef ⇒False
| THead ⇒False
end of H2
consider H2
we proved
<λ:T.Prop>
CASE TLRef n1 OF
TSort ⇒True
| TLRef ⇒False
| THead ⇒False
that is equivalent to False
we proceed by induction on the previous result to prove ex nat λn3:nat.eq T (TSort n2) (TLRef n3)
we proved ex nat λn3:nat.eq T (TSort n2) (TLRef n3)
∀H1:(eq T (TSort n0) (TLRef n1)).(ex nat λn3:nat.eq T (TSort n2) (TLRef n3))
case iso_lref : i1:nat i2:nat ⇒
the thesis becomes
∀H1:(eq T (TLRef i1) (TLRef n1)).(ex nat λn2:nat.eq T (TLRef i2) (TLRef n2))
suppose H1: eq T (TLRef i1) (TLRef n1)
by (refl_equal . .)
we proved eq T (TLRef i2) (TLRef i2)
by (ex_intro . . . previous)
we proved ex nat λn2:nat.eq T (TLRef i2) (TLRef n2)
∀H1:(eq T (TLRef i1) (TLRef n1)).(ex nat λn2:nat.eq T (TLRef i2) (TLRef n2))
case iso_head : v1:T v2:T t1:T t2:T k:K ⇒
the thesis becomes
∀H1:eq T (THead k v1 t1) (TLRef n1)
.ex nat λn2:nat.eq T (THead k v2 t2) (TLRef n2)
suppose H1: eq T (THead k v1 t1) (TLRef n1)
(H2)
we proceed by induction on H1 to prove
<λ:T.Prop>
CASE TLRef n1 OF
TSort ⇒False
| TLRef ⇒False
| THead ⇒True
case refl_equal : ⇒
the thesis becomes
<λ:T.Prop>
CASE THead k v1 t1 OF
TSort ⇒False
| TLRef ⇒False
| THead ⇒True
consider I
we proved True
<λ:T.Prop>
CASE THead k v1 t1 OF
TSort ⇒False
| TLRef ⇒False
| THead ⇒True
<λ:T.Prop>
CASE TLRef n1 OF
TSort ⇒False
| TLRef ⇒False
| THead ⇒True
end of H2
consider H2
we proved
<λ:T.Prop>
CASE TLRef n1 OF
TSort ⇒False
| TLRef ⇒False
| THead ⇒True
that is equivalent to False
we proceed by induction on the previous result to prove ex nat λn2:nat.eq T (THead k v2 t2) (TLRef n2)
we proved ex nat λn2:nat.eq T (THead k v2 t2) (TLRef n2)
∀H1:eq T (THead k v1 t1) (TLRef n1)
.ex nat λn2:nat.eq T (THead k v2 t2) (TLRef n2)
we proved (eq T y (TLRef n1))→(ex nat λn2:nat.eq T u2 (TLRef n2))
we proved
∀y:T
.iso y u2
→(eq T y (TLRef n1))→(ex nat λn2:nat.eq T u2 (TLRef n2))
by (insert_eq . . . . previous H)
we proved ex nat λn2:nat.eq T u2 (TLRef n2)
we proved ∀u2:T.∀n1:nat.(iso (TLRef n1) u2)→(ex nat λn2:nat.eq T u2 (TLRef n2))