DEFINITION getl_head()
TYPE =
∀k:K
.∀h:nat.∀c:C.∀e:C.(getl (r k h) c e)→∀u:T.(getl (S h) (CHead c k u) e)
BODY =
assume k: K
assume h: nat
assume c: C
assume e: C
suppose H: getl (r k h) c e
assume u: T
(H0)
by (getl_gen_all . . . H)
ex2 C λe:C.drop (r k h) O c e λe:C.clear e e
end of H0
we proceed by induction on H0 to prove getl (S h) (CHead c k u) e
case ex_intro2 : x:C H1:drop (r k h) O c x H2:clear x e ⇒
the thesis becomes getl (S h) (CHead c k u) e
by (drop_drop . . . . H1 .)
we proved drop (S h) O (CHead c k u) x
by (getl_intro . . . . previous H2)
getl (S h) (CHead c k u) e
we proved getl (S h) (CHead c k u) e
we proved
∀k:K
.∀h:nat.∀c:C.∀e:C.(getl (r k h) c e)→∀u:T.(getl (S h) (CHead c k u) e)