DEFINITION getl_gen_sort()
TYPE =
∀n:nat.∀h:nat.∀x:C.(getl h (CSort n) x)→∀P:Prop.P
BODY =
assume n: nat
assume h: nat
assume x: C
suppose H: getl h (CSort n) x
assume P: Prop
(H0)
by (getl_gen_all . . . H)
ex2 C λe:C.drop h O (CSort n) e λe:C.clear e x
end of H0
we proceed by induction on H0 to prove P
case ex_intro2 : x0:C H1:drop h O (CSort n) x0 H2:clear x0 x ⇒
the thesis becomes P
by (drop_gen_sort . . . . H1)
we proved and3 (eq C x0 (CSort n)) (eq nat h O) (eq nat O O)
we proceed by induction on the previous result to prove P
case and3_intro : H3:eq C x0 (CSort n) :eq nat h O :eq nat O O ⇒
the thesis becomes P
(H6)
we proceed by induction on H3 to prove clear (CSort n) x
case refl_equal : ⇒
the thesis becomes the hypothesis H2
clear (CSort n) x
end of H6
by (clear_gen_sort . . H6 .)
P
P
we proved P
we proved ∀n:nat.∀h:nat.∀x:C.(getl h (CSort n) x)→∀P:Prop.P