DEFINITION getl_gen_S()
TYPE =
∀k:K
.∀c:C.∀x:C.∀u:T.∀h:nat.(getl (S h) (CHead c k u) x)→(getl (r k h) c x)
BODY =
assume k: K
assume c: C
assume x: C
assume u: T
assume h: nat
suppose H: getl (S h) (CHead c k u) x
(H0)
by (getl_gen_all . . . H)
ex2 C λe:C.drop (S h) O (CHead c k u) e λe:C.clear e x
end of H0
we proceed by induction on H0 to prove getl (r k h) c x
case ex_intro2 : x0:C H1:drop (S h) O (CHead c k u) x0 H2:clear x0 x ⇒
the thesis becomes getl (r k h) c x
by (drop_gen_drop . . . . . H1)
we proved drop (r k h) O c x0
by (getl_intro . . . . previous H2)
getl (r k h) c x
we proved getl (r k h) c x
we proved
∀k:K
.∀c:C.∀x:C.∀u:T.∀h:nat.(getl (S h) (CHead c k u) x)→(getl (r k h) c x)